BLOW-UP AND GLOBAL EXISTENCE OF SOLUTIONS FOR A TIME FRACTIONAL DIFFUSION EQUATION

被引:11
作者
Li, Yaning [1 ]
Zhang, Quanguo [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
[2] Luoyang Normal Univ, Dept Math, Luoyang 471022, Henan, Peoples R China
关键词
fractional calculus; blow-up; global existence; nonlinear memory; CAUCHY-PROBLEMS; CRITICAL EXPONENT; NONEXISTENCE;
D O I
10.1515/fca-2018-0085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the blow-up and global existence of solutions to the following time fractional nonlinear diffusion equations {(C)(0)D(t)(alpha)u - Delta u = I-0(t)1-gamma (vertical bar u vertical bar(p-1)u), x is an element of R-N, t > 0, u(0,x) = u(0)(x), x is an element of R-N, where 0 < alpha < gamma < 1, p > 1, u(0) is an element of C-0(R-N), I-0(t)theta denotes left Riemann-Liouville fractional integrals of order theta. (C)(0)D(t)(alpha)u = partial derivative/partial derivative t(0)I(t)(1-alpha) (u(t, x) - u(0, x)). Let beta = 1-gamma. We prove that if 1 < p < p* = max{1 + beta/alpha,1 + 2(alpha + beta)/alpha N}, the solutions of (1.1) blows up in a finite time. If N < 2(alpha + beta)/beta, p >= p * or N >= 2(alpha + beta)/beta, p > p*, and parallel to u(0)parallel to(Lqc) (R-N) is sufficiently small, where q(c) = N alpha(p-1)/2(alpha+beta), the solutions of (1.1) exists globally.
引用
收藏
页码:1619 / 1640
页数:22
相关论文
共 40 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION
[2]  
[Anonymous], 2012, Semigroups of Linear Operators and Applications to Partial Differential Equations, DOI DOI 10.1007/978-1-4612-5561-1
[3]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[4]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[5]   On the existence of blow up solutions for a class of fractional differential equations [J].
Bai, Zhanbing ;
Chen, YangQuan ;
Lian, Hairong ;
Sun, Sujing .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (04) :1175-1187
[6]  
Bazhlekova EG., 2000, Fract. Calc. Appl. Anal, V3, P213
[7]   SUBORDINATION IN A CLASS OF GENERALIZED TIME-FRACTIONAL DIFFUSION-WAVE EQUATIONS [J].
Bazhlekova, Emilia .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (04) :869-900
[8]  
Cazenave T., 1998, OXFORD LECT SERIES M, V13
[9]   An equation whose Fujita critical exponent is not given by scaling [J].
Cazenave, Thierry ;
Dickstein, Flavio ;
Weissler, Fred B. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (04) :862-874
[10]   Cauchy problem for fractional diffusion equations [J].
Eidelman, SD ;
Kochubei, AN .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (02) :211-255