We investigate the following gauged nonlinear Schrodinger equation {-Delta u + omega u + lambda(h(u)(2)(vertical bar x vertical bar)/vertical bar x vertical bar(2) + integral(+infinity)(vertical bar x vertical bar) h(u)(s)/s u(2)(s)ds)u = f(u) in R-2, u is an element of H-r(1) (R-2), where omega, lambda > 0 and h(u)(s) = 1/2 integral(s)(0) ru(2)(r)dr. When f has exponential critical growth, by using the constrained minimization method and Trudinger-Moser inequality, it is proved that the equation has a ground state radial sign-changing solution u(lambda) which changes sign exactly once. Moreover, the asymptotic behavior of u(lambda) as lambda -> 0 is analyzed.
机构:
Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R ChinaCent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R China
Li, Gongbao
Luo, Xiao
论文数: 0引用数: 0
h-index: 0
机构:Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R China
Luo, Xiao
Shuai, Wei
论文数: 0引用数: 0
h-index: 0
机构:Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R China
机构:
Beijing Technol & Business Univ, Sch Math & Stat, Beijing, Peoples R ChinaBeijing Technol & Business Univ, Sch Math & Stat, Beijing, Peoples R China
Jing, Yongtao
Liu, Haidong
论文数: 0引用数: 0
h-index: 0
机构:
Jiaxing Univ, Inst Math, Jiaxing, Zhejiang, Peoples R ChinaBeijing Technol & Business Univ, Sch Math & Stat, Beijing, Peoples R China
机构:
Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing, Peoples R China
Wang, Ying
Yuan, Rong
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing, Peoples R China
机构:
Peking Univ, Sch Math, LMAM, Beijing 100871, Peoples R ChinaPeking Univ, Sch Math, LMAM, Beijing 100871, Peoples R China
Liu, Jiaquan
Liu, Xiangqing
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Normal Univ, Dept Math, Kunming 650500, Peoples R ChinaPeking Univ, Sch Math, LMAM, Beijing 100871, Peoples R China
Liu, Xiangqing
Wang, Zhi-Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
Utah State Univ, Dept Math & Stat, Logan, UT 84322 USAPeking Univ, Sch Math, LMAM, Beijing 100871, Peoples R China