Low-rank and sparse matrix decomposition with background position estimation for hyperspectral anomaly detection

被引:5
作者
Yang, Yixin [1 ]
Zhang, Jianqi [1 ]
Liu, Delian [1 ]
Wu, Xin [1 ]
机构
[1] Xidian Univ, Sch Phys & Optoelect Engn, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Anomaly detection; Hyperspectral imagery; Low-rank and sparse matrix decomposition; Endmember extraction; Background estimation; ENDMEMBER EXTRACTION; REPRESENTATION; ALGORITHMS;
D O I
10.1016/j.infrared.2018.11.010
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Hyperspectral anomaly detection (AD) has attracted much attention over the last 20 years. It distinguishes pixels with significant spectral differences from the background without any prior knowledge. The low-rank and sparse matrix decomposition (LRaSMD)-based detector has been applied to AD, where the anomaly value is measured by Euclidean distance based on the sparse component. However, the background interference in sparse component seriously increases the false alarm rate and influences the detection of real anomalies. In this paper, a novel AD method based on LRaSMD and background position estimation is proposed, which aims to suppress background interference in the sparse component for a better separation between background and anomalies. Firstly, the original sparse matrix is obtained using the traditional LRaSMD method. Secondly, the abundance maps are constructed by the sequential maximum angel convex cone (SMACC) endmember extraction model. Thirdly, considering that the anomalies occupy only a few pixels with a low probability, the coordinate positions of background pixels are estimated through these abundance maps. Finally, the spectra corresponding to these positions in the original sparse matrix are replaced with zero vectors, and the final anomaly value is calculated based on the improved sparse matrix. The proposed method achieves an outstanding performance by considering both the spectral and spatial characteristics of anomalies. Experimental results on synthetic and real-world hyperspectral datasets demonstrate the superiority of the proposed method compared with several state-of-the-art AD detectors.
引用
收藏
页码:213 / 227
页数:15
相关论文
共 50 条
  • [41] Hyperspectral anomaly detection using low-rank representation and learned dictionary
    Niu Yu-Bin
    Wang Bin
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2016, 35 (06) : 731 - 740
  • [42] FABRIC DEFECT DETECTION BASED ON IMPROVED LOW-RANK AND SPARSE MATRIX DECOMPOSITION
    Wang, Jianzhu
    Li, Qingyong
    Gan, Jinrui
    Yu, Haomin
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 2776 - 2780
  • [43] A Distributed Parallel Algorithm Based on Low-Rank and Sparse Representation for Anomaly Detection in Hyperspectral Images
    Zhang, Yi
    Wu, Zebin
    Sun, Jin
    Zhang, Yan
    Zhu, Yaoqin
    Liu, Jun
    Zang, Qitao
    Plaza, Antonio
    SENSORS, 2018, 18 (11)
  • [44] Hyperspectral Image Abnormal Target Detection Based on End-Member Extraction and Low-Rank and Sparse Matrix Decomposition
    Yang Guoliang
    Gong Jiaren
    Xi Hao
    Yu Dingling
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (22)
  • [45] Moving Object Detection Method Based on Low-Rank and Sparse Decomposition in Dynamic Background
    Wang Hongyan
    Zhang Haikun
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2020, 42 (11) : 2788 - 2795
  • [46] Weakly Supervised Low-Rank Representation for Hyperspectral Anomaly Detection
    Xie, Weiying
    Zhang, Xin
    Li, Yunsong
    Lei, Jie
    Li, Jiaojiao
    Du, Qian
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (08) : 3889 - 3900
  • [47] Learning Tensor Low-Rank Representation for Hyperspectral Anomaly Detection
    Wang, Minghua
    Wang, Qiang
    Hong, Danfeng
    Roy, Swalpa Kumar
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (01) : 679 - 691
  • [48] Hyperspectral Superresolution Reconstruction via Decomposition of Low-Rank and Sparse Tensor
    Wu, Huajing
    Zhang, Kefei
    Wu, Suqin
    Zhang, Minghao
    Shi, Shuangshuang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 8943 - 8957
  • [49] Hyperspectral Image Denoising With Group Sparse and Low-Rank Tensor Decomposition
    Huang, Zhihong
    Li, Shutao
    Fang, Leyuan
    Li, Huali
    Benediktsson, Jon Atli
    IEEE ACCESS, 2018, 6 : 1380 - 1390
  • [50] Hyperspectral Anomaly Detection Through Spectral Unmixing and Dictionary-Based Low-Rank Decomposition
    Qu, Ying
    Wang, Wei
    Guo, Rui
    Ayhan, Bulent
    Kwan, Chiman
    Vance, Steven
    Qi, Hairong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (08): : 4391 - 4405