Low-rank and sparse matrix decomposition with background position estimation for hyperspectral anomaly detection

被引:5
作者
Yang, Yixin [1 ]
Zhang, Jianqi [1 ]
Liu, Delian [1 ]
Wu, Xin [1 ]
机构
[1] Xidian Univ, Sch Phys & Optoelect Engn, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Anomaly detection; Hyperspectral imagery; Low-rank and sparse matrix decomposition; Endmember extraction; Background estimation; ENDMEMBER EXTRACTION; REPRESENTATION; ALGORITHMS;
D O I
10.1016/j.infrared.2018.11.010
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Hyperspectral anomaly detection (AD) has attracted much attention over the last 20 years. It distinguishes pixels with significant spectral differences from the background without any prior knowledge. The low-rank and sparse matrix decomposition (LRaSMD)-based detector has been applied to AD, where the anomaly value is measured by Euclidean distance based on the sparse component. However, the background interference in sparse component seriously increases the false alarm rate and influences the detection of real anomalies. In this paper, a novel AD method based on LRaSMD and background position estimation is proposed, which aims to suppress background interference in the sparse component for a better separation between background and anomalies. Firstly, the original sparse matrix is obtained using the traditional LRaSMD method. Secondly, the abundance maps are constructed by the sequential maximum angel convex cone (SMACC) endmember extraction model. Thirdly, considering that the anomalies occupy only a few pixels with a low probability, the coordinate positions of background pixels are estimated through these abundance maps. Finally, the spectra corresponding to these positions in the original sparse matrix are replaced with zero vectors, and the final anomaly value is calculated based on the improved sparse matrix. The proposed method achieves an outstanding performance by considering both the spectral and spatial characteristics of anomalies. Experimental results on synthetic and real-world hyperspectral datasets demonstrate the superiority of the proposed method compared with several state-of-the-art AD detectors.
引用
收藏
页码:213 / 227
页数:15
相关论文
共 50 条
  • [31] Hyperspectral Images Denoising via Nonconvex Regularized Low-Rank and Sparse Matrix Decomposition
    Xie, Ting
    Li, Shutao
    Sun, Bin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 44 - 56
  • [32] A DISTRIBUTED AND PARALLEL ANOMALY DETECTION IN HYPERSPECTRAL IMAGES BASED ON LOW-RANK AND SPARSE REPRESENTATION
    Liu, Jun
    Zhang, Weixuan
    Wu, Zebin
    Zhang, Yi
    Xu, Yang
    Qian, Ling
    Wei, Zhihui
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2861 - 2864
  • [33] Hyperspectral Anomaly Detection via Background Estimation and Adaptive Weighted Sparse Representation
    Zhu, Lingxiao
    Wen, Gongjian
    REMOTE SENSING, 2018, 10 (02):
  • [34] Hyperspectral Abnormal Target Detection Based on Low Rank and Sparse Matrix Decomposition-Sparse Representation
    Zhang Xiaohui
    Hao Runfang
    Li Tingyu
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (04)
  • [35] LOW-RANK AND COLLABORATIVE REPRESENTATION FOR HYPERSPECTRAL ANOMALY DETECTION
    Wu, Zhaoyue
    Su, Hongjun
    Du, Qian
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1394 - 1397
  • [36] An Improved Low Rank and Sparse Matrix Decomposition-Based Anomaly Target Detection Algorithm for Hyperspectral Imagery
    Zhang, Yan
    Fan, Yanguo
    Xu, Mingming
    Li, Wei
    Zhang, Guangyu
    Liu, Li
    Yu, Dingfeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 (13) : 2663 - 2672
  • [37] Deep Low-Rank Prior for Hyperspectral Anomaly Detection
    Wang, Shaoyu
    Wang, Xinyu
    Zhang, Liangpei
    Zhong, Yanfei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [38] Robust low-rank abundance matrix estimation for hyperspectral unmixing
    Feng, Fan
    Zhao, Baojun
    Tang, Linbo
    Wang, Wenzheng
    Jia, Sen
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (21): : 7406 - 7409
  • [39] Hyperspectral Anomaly Detection Based on Low-Rank Representation and Learned Dictionary
    Niu, Yubin
    Wang, Bin
    REMOTE SENSING, 2016, 8 (04)
  • [40] Hyperspectral Anomaly Detection Based on Adaptive Low-Rank Transformed Tensor
    Sun, Siyu
    Liu, Jun
    Zhang, Ziwei
    Li, Wei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (07) : 9787 - 9799