Laser 3D micro/nanofabrication of polymers for tissue engineering applications

被引:46
|
作者
Danilevicius, P. [1 ]
Rekstyte, S. [1 ]
Balciunas, E. [2 ]
Kraniauskas, A. [3 ]
Sirmenis, R. [3 ]
Baltriukiene, D. [2 ]
Bukelskiene, V. [2 ]
Gadonas, R. [1 ]
Sirvydis, V. [3 ]
Piskarskas, A. [1 ]
Malinauskas, M. [1 ]
机构
[1] Vilnius Univ, Fac Phys, Dept Quantum Elect, LT-10223 Vilnius, Lithuania
[2] Vivarium, Inst Biochem, LT-08662 Vilnius, Lithuania
[3] Vilnius Univ Hosp Santariskiu Klin, Ctr Heart Surg, LT-08661 Vilnius, Lithuania
来源
关键词
Femtosecond laser micro/nanofabrication; 3D artificial scaffolds; Tissue engineering; ELECTRON-BEAM LITHOGRAPHY; 2-PHOTON POLYMERIZATION; CELL-GROWTH; PORE-SIZE; SCAFFOLDS; FABRICATION; MICROFABRICATION; MATRIX; BONE;
D O I
10.1016/j.optlastec.2012.05.038
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work, we applied a constructed multi-photon polymerization system based on diode-pumped solid state femtosecond Yb:KGW laser used as pulsed irradiation light source (300 fs, 1030 nm, 200 kHz) in combination with large area high sample translation velocity (up to 300 mm/s) linear motor-driven stages (100 x 100 x 50 mm(3)) designed for high resolution and throughput 3D micro/nanofabrication. It enables rapid prototyping out of most polymers up to cm in scale with submicrometer spatial resolution. This can be used for production of three-dimensional artificial polymeric scaffolds applied for cell growth and expansion experiments as well as tissue engineering. Biocompatibilities of different acrylate, hybrid organic-inorganic and biodegradable polymeric materials were evaluated experimentally in vitro. Various in size and form scaffolds of biocompatible photopolymers were successfully fabricated having intricate 3D geometry, thus demonstrating the potential of the applied method. Adult rabbit myogenic stem cell proliferation tests show artificial scaffolds to be applicable for biomedical practice. Additionally, a micromolding technique was used for a rapid multiplication of adequate laser manufactured structures. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:518 / 524
页数:7
相关论文
共 50 条
  • [1] LASER-MICRO/NANOFABRICATED 3D POLYMERS FOR TISSUE ENGINEERING APPLICATIONS
    Danilevicius, P.
    Zukauskas, A.
    Bickauskaite, G.
    Purlys, V.
    Rutkauskas, M.
    Gertus, T.
    Paipulas, D.
    Matukaite, J.
    Baltriukiene, D.
    Malinauskas, M.
    LATVIAN JOURNAL OF PHYSICS AND TECHNICAL SCIENCES, 2011, 48 (02) : 32 - 43
  • [2] 3D and 4D Printing of Polymers for Tissue Engineering Applications
    Tamay, Dilara Goksu
    Usal, Tugba Dursun
    Alagoz, Ayse Selcen
    Yucel, Deniz
    Hasirci, Nesrin
    Hasirci, Vasif
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2019, 7 (JUL):
  • [3] Femtosecond laser "dual 3D" nanofabrication of smart micro/nanoactuators
    Ma, Zhuo-Chen
    Zhang, Yong-Lai
    Sun, Hong-Bo
    CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (34): : 3856 - 3857
  • [4] 3D Printing for Tissue Engineering Applications
    Hacioglu, Askican
    Yilmazer, Hakan
    Ustundag, Cem Bulent
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2018, 21 (01): : 221 - 227
  • [5] Large 3D direct laser written scaffolds for tissue engineering applications
    Trautmann, Anika
    Rueth, Marieke
    Lemke, Horst-Dieter
    Walther, Thomas
    Hellmann, Ralf
    NANOPHOTONICS AUSTRALASIA 2017, 2017, 10456
  • [6] Direct laser writing of 3D scaffolds for neural tissue engineering applications
    Melissinaki, V.
    Gill, A. A.
    Ortega, I.
    Vamvakaki, M.
    Ranella, A.
    Haycock, J. W.
    Fotakis, C.
    Farsari, M.
    Claeyssens, F.
    BIOFABRICATION, 2011, 3 (04)
  • [7] Polymers for 3D printing in biomedical engineering applications
    Desai, Harsh
    Shah, Nimish
    Saiyad, Mamta
    Dwivedi, Ankur
    Joshipura, Milind
    JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 : 1870 - 1880
  • [8] Laser-made 3D Auxetic Metamaterial Scaffolds for Tissue Engineering Applications
    Flamourakis, George
    Spanos, Ioannis
    Vangelatos, Zacharias
    Manganas, Phanee
    Papadimitriou, Lina
    Grigoropoulos, Costas
    Ranella, Anthi
    Farsari, Maria
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2020, 305 (07)
  • [9] The Applications of 3D Printing for Craniofacial Tissue Engineering
    Tao, Owen
    Kort-Mascort, Jacqueline
    Lin, Yi
    Pham, Hieu M.
    Charbonneau, Andre M.
    ElKashty, Osama A.
    Kinsella, Joseph M.
    Tran, Simon D.
    MICROMACHINES, 2019, 10 (07)
  • [10] 3D Nanoprinting Technologies for Tissue Engineering Applications
    Lee, Jin Woo
    JOURNAL OF NANOMATERIALS, 2015, 2015