Berry-Esseen bounds for density estimates under NA assumption

被引:11
作者
Liang, Han-Ying [1 ]
Baek, Jong-Il [2 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
[2] Wonkwang Univ, Sch Math & Informat Stat, Iksan 570749, South Korea
基金
中国国家自然科学基金;
关键词
Negatively associated random variable; Berry-Esseen bound; Density estimate;
D O I
10.1007/s00184-007-0159-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {X-j} be a strictly stationary sequence of negatively associated random variables with the marginal probability density function f(x). The recursive kernel estimators of f(x) are defined by (f) over cap (n)(x) = 1/n root b(n) (n)Sigma(j=1) b(j)(-1/2) K(x-X-j/b(j)), (f) over tilde (n)(x) = 1/n = 1/n (n)Sigma(j=1) 1/b(j)K(x-X-j/b(j)) and the Rosenblatt-Parzen's kernel estimator of f(x) is defined by f(n)(x) = 1/nb(n) Sigma(n)(j=1) K(x-X-j/b(n)), where 0 < b(n) -> 0 are bandwidths and K is some kernel function. In this paper, we study the uniformly Berry-Esseen bounds for these estimators of f(x). In particular, by choice of the bandwidths, the Berry-Esseen bounds of the estimators attain O ((log n/n)(1/6)).
引用
收藏
页码:305 / 322
页数:18
相关论文
共 28 条
[1]   On the convergence of moving average processes under dependent conditions [J].
Baek, JI ;
Kim, TS ;
Liang, HY .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2003, 45 (03) :331-342
[2]   Berry-Esseen bounds for smooth estimator of a distribution function under association [J].
Cai, ZW ;
Roussas, GG .
JOURNAL OF NONPARAMETRIC STATISTICS, 1999, 11 (1-3) :79-106
[3]   BERRY-ESSEEN BOUND FOR THE KAPLAN-MEIER ESTIMATOR [J].
CHANG, MN ;
RAO, PV .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1989, 18 (12) :4647-4664
[4]   STRONG CONSISTENT DENSITY ESTIMATE FROM ERGODIC SAMPLE [J].
GYORFI, L .
JOURNAL OF MULTIVARIATE ANALYSIS, 1981, 11 (01) :81-84
[5]  
Hall P, 1980, COMMUNICATION BEHAV
[6]   NEGATIVE ASSOCIATION OF RANDOM-VARIABLES, WITH APPLICATIONS [J].
JOAGDEV, K ;
PROSCHAN, F .
ANNALS OF STATISTICS, 1983, 11 (01) :286-295
[7]   Complete convergence for weighted sums of NA sequences [J].
Liang, HY ;
Su, C .
STATISTICS & PROBABILITY LETTERS, 1999, 45 (01) :85-95
[8]   Complete convergence for weighted sums of negatively associated random variables [J].
Liang, HY .
STATISTICS & PROBABILITY LETTERS, 2000, 48 (04) :317-325
[9]   Weighted sums of negatively associated random variables [J].
Liang, HY ;
Baek, JI .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2006, 48 (01) :21-31
[10]   Asymptotic properties for estimates of nonparametric regression models based on negatively associated sequences [J].
Liang, HY ;
Jing, BY .
JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 95 (02) :227-245