Negatively associated random variable;
Berry-Esseen bound;
Density estimate;
D O I:
10.1007/s00184-007-0159-y
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Let {X-j} be a strictly stationary sequence of negatively associated random variables with the marginal probability density function f(x). The recursive kernel estimators of f(x) are defined by (f) over cap (n)(x) = 1/n root b(n) (n)Sigma(j=1) b(j)(-1/2) K(x-X-j/b(j)), (f) over tilde (n)(x) = 1/n = 1/n (n)Sigma(j=1) 1/b(j)K(x-X-j/b(j)) and the Rosenblatt-Parzen's kernel estimator of f(x) is defined by f(n)(x) = 1/nb(n) Sigma(n)(j=1) K(x-X-j/b(n)), where 0 < b(n) -> 0 are bandwidths and K is some kernel function. In this paper, we study the uniformly Berry-Esseen bounds for these estimators of f(x). In particular, by choice of the bandwidths, the Berry-Esseen bounds of the estimators attain O ((log n/n)(1/6)).
机构:Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
Liang, HY
Jing, BY
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
机构:Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
Liang, HY
Jing, BY
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China