Berry-Esseen bounds for density estimates under NA assumption

被引:11
作者
Liang, Han-Ying [1 ]
Baek, Jong-Il [2 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
[2] Wonkwang Univ, Sch Math & Informat Stat, Iksan 570749, South Korea
基金
中国国家自然科学基金;
关键词
Negatively associated random variable; Berry-Esseen bound; Density estimate;
D O I
10.1007/s00184-007-0159-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {X-j} be a strictly stationary sequence of negatively associated random variables with the marginal probability density function f(x). The recursive kernel estimators of f(x) are defined by (f) over cap (n)(x) = 1/n root b(n) (n)Sigma(j=1) b(j)(-1/2) K(x-X-j/b(j)), (f) over tilde (n)(x) = 1/n = 1/n (n)Sigma(j=1) 1/b(j)K(x-X-j/b(j)) and the Rosenblatt-Parzen's kernel estimator of f(x) is defined by f(n)(x) = 1/nb(n) Sigma(n)(j=1) K(x-X-j/b(n)), where 0 < b(n) -> 0 are bandwidths and K is some kernel function. In this paper, we study the uniformly Berry-Esseen bounds for these estimators of f(x). In particular, by choice of the bandwidths, the Berry-Esseen bounds of the estimators attain O ((log n/n)(1/6)).
引用
收藏
页码:305 / 322
页数:18
相关论文
共 28 条