On convergence rates for the iteratively regularized Gauss-Newton method

被引:162
作者
Blaschke, B
Neubauer, A
Scherzer, O
机构
[1] Institut für Mathematik, Johannes-Kepler-Universität
关键词
D O I
10.1093/imanum/17.3.421
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that the iteratively regularized Gauss-Newton method is a locally convergent method for solving nonlinear ill-posed problems, provided the nonlinear operator satisfies a certain smoothness condition. For perturbed data we propose a priori and a posteriori stopping rules that guarantee convergence of the iterates, if the noise level goes to zero. Under appropriate closeness and smoothness conditions on the exact solution we obtain the same convergence rates as for linear ill-posed problems.
引用
收藏
页码:421 / 436
页数:16
相关论文
共 11 条
[1]  
Bakushinskii A. B., 1989, ITERATIVE METHODS SO
[2]  
BAKUSHINSKII AB, 1992, COMP MATH MATH PHYS+, V32, P1353
[3]  
BAKUSHINSKII AB, 1994, COMMUNICATION
[4]   CONVERGENCE-RATES FOR TIKHONOV REGULARISATION OF NON-LINEAR ILL-POSED PROBLEMS [J].
ENGL, HW ;
KUNISCH, K ;
NEUBAUER, A .
INVERSE PROBLEMS, 1989, 5 (04) :523-540
[5]  
Groetsch C. W., 1984, THEORY TIKHONOV REGU
[6]   A CONVERGENCE ANALYSIS OF THE LANDWEBER ITERATION FOR NONLINEAR ILL-POSED PROBLEMS [J].
HANKE, M ;
NEUBAUER, A ;
SCHERZER, O .
NUMERISCHE MATHEMATIK, 1995, 72 (01) :21-37
[7]  
Louis A K., 1989, Inverse und schlecht gestellte Probleme
[9]   OPTIMAL A POSTERIORI PARAMETER CHOICE FOR TIKHONOV REGULARIZATION FOR SOLVING NONLINEAR III-POSED PROBLEMS [J].
SCHERZER, O ;
ENGL, HW ;
KUNISCH, K .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (06) :1796-1838
[10]   WELL POSEDNESS AND CONVERGENCE OF SOME REGULARISATION METHODS FOR NON-LINEAR ILL POSED PROBLEMS [J].
SEIDMAN, TI ;
VOGEL, CR .
INVERSE PROBLEMS, 1989, 5 (02) :227-238