Use of Background Knowledge in Natural Language Understanding for Information Fusion

被引:0
作者
Shapiro, Stuart C. [1 ,2 ]
Schlegel, Daniel R. [1 ,2 ]
机构
[1] SUNY Buffalo, Ctr Multisource Informat Fus, Dept Comp Sci & Engn, Buffalo, NY USA
[2] SUNY Buffalo, Ctr Cognit Sci, Buffalo, NY USA
来源
2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION) | 2015年
关键词
background knowledge; natural language understanding; soft information fusion; message understanding; information extraction; hard plus soft information fusion;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tractor is a system for understanding English messages within the context of hard and soft information fusion for situation assessment. Tractor processes a message through text processors, and stores the result, expressed in a formal knowledge representation language, in a syntactic knowledge base. This knowledge base is enhanced with ontological and geographic information. Finally, Tractor applies hand-crafted syntax-semantics mapping rules to convert the enhanced syntactic knowledge base into a semantic knowledge base containing the information from the message enhanced with relevant background information. Throughout its processing, Tractor makes use of various kinds of background knowledge: knowledge of English usage; world knowledge; domain knowledge; and axiomatic knowledge. In this paper, we discuss the various kinds of background knowledge Tractor uses, and the roles they play in Tractor's understanding of the messages.
引用
收藏
页码:901 / 907
页数:7
相关论文
共 24 条
[1]  
[Anonymous], 2009, COMMONSENSE
[2]  
[Anonymous], 2010, AB WORDNET
[3]  
[Anonymous], 2011, Text Processing with GATE (Version 6)
[4]  
Cunningham H, 2002, 40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P168
[5]  
Gomez-Romero J., 2010, P 13 INT C INF FUS F
[6]  
Graham J. L., 2011, P SPIE DEF SEC SENS, P25
[7]  
Gross G. A., 2012, 2012 15th International Conference on Information Fusion (FUSION 2012), P955
[8]  
Gross G. A., 2014, P 17 INT C INF FUS F
[9]  
Jurafsky D., 2009, Speech and Language Processing, DOI DOI 10.1162/JMLR.2003.3.4-5.993
[10]  
Kandefer M., 2011, P 14 INT C INF FUS F, P498