Realizing the potential of dielectric elastomer artificial muscles

被引:333
作者
Duduta, Mihai [1 ,2 ]
Hajiesmaili, Ehsan [1 ]
Zhao, Huichan [1 ,2 ]
Wood, Robert J. [1 ,2 ]
Clarke, David R. [1 ]
机构
[1] Harvard Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
artificial muscles; soft robotics; dielectric elastomer actuators; carbon nanotubes; MECHANICAL POWER OUTPUT; ACTUATORS; STRAIN; TRANSPARENT; ENERGY;
D O I
10.1073/pnas.1815053116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Soft robotics represents a new set of technologies aimed at operating in natural environments and near the human body. To interact with their environment, soft robots require artificial muscles to actuate movement. These artificial muscles need to be as strong, fast, and robust as their natural counterparts. Dielectric elastomer actuators (DEAs) are promising soft transducers, but typically exhibit low output forces and low energy densities when used without rigid supports. Here, we report a soft composite DEA made of strain-stiffening elastomers and carbon nanotube electrodes, which demonstrates a peak energy density of 19.8 J/kg. The result is close to the upper limit for natural muscle (0.4-40 J/kg), making these DEAs the highest-performance electrically driven soft artificial muscles demonstrated to date. To obtain high forces and displacements, we used low-density, ultrathin carbon nanotube electrodes which can sustain applied electric fields upward of 100 V/mu m without suffering from dielectric breakdown. Potential applications include prosthetics, surgical robots, and wearable devices, as well as soft robots capable of locomotion and manipulation in natural or human-centric environments.
引用
收藏
页码:2476 / 2481
页数:6
相关论文
共 40 条
[21]   Bi-axially crumpled silver thin-film electrodes for dielectric elastomer actuators [J].
Low, Sze-Hsien ;
Lau, Gih-Keong .
SMART MATERIALS AND STRUCTURES, 2014, 23 (12)
[22]   Artificial muscle technology: Physical principles and naval prospects [J].
Madden, JDW ;
Vandesteeg, NA ;
Anquetil, PA ;
Madden, PGA ;
Takshi, A ;
Pytel, RZ ;
Lafontaine, SR ;
Wieringa, PA ;
Hunter, IW .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2004, 29 (03) :706-728
[23]   Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators [J].
Marchese, Andrew D. ;
Onal, Cagdas D. ;
Rus, Daniela .
SOFT ROBOTICS, 2014, 1 (01) :75-87
[24]   Muscle-like actuators? A comparison between three electroactive polymers. [J].
Meijer, K ;
Rosenthal, M ;
Full, RJ .
SMART STRUCTURES AND MATERIALS 2001: ELECTROACTIVE POLYMER ACTUATORS AND DEVICES, 2001, 4329 :7-15
[25]   MECHANICAL POWER OUTPUT OF LOCUST FLIGHT-MUSCLE [J].
MIZISIN, AP ;
JOSEPHSON, RK .
JOURNAL OF COMPARATIVE PHYSIOLOGY A-SENSORY NEURAL AND BEHAVIORAL PHYSIOLOGY, 1987, 160 (03) :413-419
[26]   Synthesizing a new dielectric elastomer exhibiting large actuation strain and suppressed electromechanical instability without prestretching [J].
Niu, Xiaofan ;
Stoyanov, Hristiyan ;
Hu, Wei ;
Leo, Ruby ;
Brochu, Paul ;
Pei, Qibing .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2013, 51 (03) :197-206
[27]   High-speed electrically actuated elastomers with strain greater than 100% [J].
Pelrine, R ;
Kornbluh, R ;
Pei, QB ;
Joseph, J .
SCIENCE, 2000, 287 (5454) :836-839
[28]   Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit [J].
Quinlivan, B. T. ;
Lee, S. ;
Malcolm, P. ;
Rossi, D. M. ;
Grimmer, M. ;
Siviy, C. ;
Karavas, N. ;
Wagner, D. ;
Asbeck, A. ;
Galiana, I. ;
Walsh, C. J. .
SCIENCE ROBOTICS, 2017, 2 (02)
[29]   Untethered soft robotics [J].
Rich, Steven I. ;
Wood, Robert J. ;
Majidi, Carmel .
NATURE ELECTRONICS, 2018, 1 (02) :102-112
[30]   Flexible and stretchable electrodes for dielectric elastomer actuators [J].
Rosset, Samuel ;
Shea, Herbert R. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2013, 110 (02) :281-307