Bounding the number of minimal dominating sets: A measure and conquer approach

被引:0
作者
Fomin, FV [1 ]
Grandoni, F
Pyatkin, AV
Stepanov, AA
机构
[1] Univ Bergen, Dept Informat, N-5020 Bergen, Norway
[2] Univ Roma La Sapienza, Dipartimento Informat, I-00198 Rome, Italy
来源
ALGORITHMS AND COMPUTATION | 2005年 / 3827卷
关键词
exact (exponential) algorithms; minimum dominating set; minimum set cover; domatic number; weighted dominating set;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that the number of minimal dominating sets in a graph on n vertices is at most 1.7697(n), thus improving on the trivial O(2(n)/root n) bound. Our result makes use of the measure and conquer technique from exact algorithms, and can be easily turned into an O(1.7697(n)) listing algorithm. Based on this result, we derive an O(2.8805(n)) algorithm for the domatic number problem, and an O(1.5780(n)) algorithm for the minimum-weight dominating set problem. Both algorithms improve over the previous algorithms.
引用
收藏
页码:573 / 582
页数:10
相关论文
共 24 条
[1]  
[Anonymous], JAHRESBER DTSCH MATH
[2]  
Beigel R., 1999, P 10 ANN ACM SIAM S, P856
[3]  
BREGMAN LM, 1973, DOKL AKAD NAUK SSSR+, V211, P27
[4]  
BYSKOV M, 2004, UNPUB ALGORITHM ENUM
[5]   A deterministic (2-2/(k+1))n algorithm for k-SAT based on local search [J].
Dantsin, E ;
Goerdt, A ;
Hirsch, EA ;
Kannan, R ;
Kleinberg, J ;
Papadimitriou, C ;
Raghavan, P ;
Schöning, U .
THEORETICAL COMPUTER SCIENCE, 2002, 289 (01) :69-83
[6]  
EDMONDS J, 1970, COMBINATORIAL STRUCT, P89
[7]  
Egorycev G. P., 1981, SIB MAT ZH, V22, P225
[8]  
Egorycev G. P., 1981, SIB MAT ZH, V22, P65
[9]  
Eppstein D., 2003, Journal of Graph Algorithms and Applications, V7, DOI 10.7155/jgaa.00064
[10]  
EPPSTEIN D., 2004, P 15 ANN ACM SIAM S, P781