This work presents a new beta-cyclodextrin based hydrophilic thin film molecularly imprinted membrane (TF-MIM), with selective di(2-ethylhexyl) phthalate (DEHP) removal ability. Firstly, glycidyl methacrylate-bonded beta-cyclodextrin (GMA-beta-CD) is synthesized as a new dual function special functional monomer. Then TF-MIMs are fabricated at a short time, by fast photo-grafting of the GMA-beta-CD as functional monomer and methylene bisacrylamide as cross-linker onto the polyethersulfone membrane in the presence of DEHP as template in MeOH/H2O solution. The porosity and pore size of TF-MIMs are determined and characterized utilizing ATR-FTIR, FE-SEM and contact angle (CA) measurement. The decreasing of CAs of the TF-MIMs from 64 degrees in the neat PES to 31.9 degrees verify that the surface hydrophilicity improved significantly. The DEHP adsorption ability of TF-MIMs are evaluated. The imprinting factor of DEHP obtained in a filtration test is 2.6 and selectivity factors of DEHP with respect to dibutyl phthalate and dioctyl terephthalate are 3.5 and 4 respectively showing that TF-MIMs have good selective removal ability for DEHP. (C) 2020 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.