Data-driven computation of minimal robust control invariant set

被引:0
|
作者
Chen, Yuxiao [1 ]
Peng, Huei [1 ]
Grizzle, Jessy [2 ]
Ozay, Necmiye [2 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48105 USA
[2] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48105 USA
来源
2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC) | 2018年
关键词
BOUNDED EXOGENOUS DISTURBANCES; UNKNOWN UPPER-BOUNDS; LINEAR-SYSTEMS; IDENTIFICATION; TRACKING;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a data-driven framework to compute an approximation of a minimal robust control invariant set (mRCI) for an uncertain dynamical system where the model of the system is also unknown and should be learned from data. First, the set of admissible models is characterized via a set of linear constraints extracted from the experimental data. Each model in the set of admissible models contains information about the nominal model, as well as the characterization of the model uncertainty, including additive and multiplicative uncertainties. Then an iterative algorithm based on robust optimization is proposed to simultaneously compute a minimal robust control invariant set while selecting an optimal model from the admissible set. The numerical results show that the proposed method greatly reduces the size of the invariant set compared to a benchmark method that sequentially selects a model with least squares and then computes the invariant set.
引用
收藏
页码:4052 / 4058
页数:7
相关论文
共 50 条
  • [1] Data-Driven Computation of Robust Control Invariant Sets With Concurrent Model Selection
    Chen, Yuxiao
    Ozay, Necmiye
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2022, 30 (02) : 495 - 506
  • [2] Data-Driven Synthesis of Robust Invariant Sets and Controllers
    Mulagaleti, Sampath Kumar
    Bemporad, Alberto
    Zanon, Mario
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 1676 - 1681
  • [3] Robust data-driven predictive control for unknown linear time-invariant systems
    Hu, Kaijian
    Liu, Tao
    SYSTEMS & CONTROL LETTERS, 2024, 193
  • [4] Invariant approximations of the minimal robust. positively invariant set
    Rakovic, SV
    Kerrigan, EC
    Kouramas, KI
    Mayne, DQ
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (03) : 406 - 410
  • [5] Robust Data-Driven Iterative Learning Control for Linear-Time-Invariant and Hammerstein-Wiener Systems
    Dong, Jianfei
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (02) : 1144 - 1157
  • [6] Robot Manipulator Control Using a Robust Data-Driven Method
    Rahmani, Mehran
    Redkar, Sangram
    FRACTAL AND FRACTIONAL, 2023, 7 (09)
  • [7] The optimal transport paradigm enables data compression in data-driven robust control
    Fabiani, Filippo
    Goulart, Paul J.
    2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 2412 - 2417
  • [8] Data Informativity: A New Perspective on Data-Driven Analysis and Control
    van Waarde, Henk J.
    Eising, Jaap
    Trentelman, Harry L.
    Camlibel, M. Kanat
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (11) : 4753 - 4768
  • [9] Constrained robust model predictive control embedded with a new data-driven technique
    Yang, L.
    Lu, J.
    Xu, Y.
    Li, D.
    Xi, Y.
    IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (16) : 2395 - 2405
  • [10] Robust Stability Analysis of a Simple Data-Driven Model Predictive Control Approach
    Bongard, Joscha
    Berberich, Julian
    Koehler, Johannes
    Allgoewer, Frank
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (05) : 2625 - 2637