A nonlinear deformation of the isotonic oscillator and the Smorodinski-Winternitz system:: Integrability and superintegrability

被引:21
作者
Cariñena, JF
Rañada, MF
Santander, M
机构
[1] Univ Zaragoza, Fac Ciencias, Dept Fis Teor, E-50009 Zaragoza, Spain
[2] Univ Valladolid, Fac Ciencias, Dept Fis Teor, E-47011 Valladolid, Spain
关键词
nonlinear equations; nonlinear oscillators; integrability; superintegrability; Hamilton-Jacobi separability;
D O I
10.1070/RD2005v010n04ABEH000324
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The properties of a nonlinear deformation of the isotonic oscillator are studied. This deformation affects to both the kinetic term and the potential and depends on a parameter lambda in such a way that for lambda = 0 all the characteristics of of the classical system are recovered. In the second part, that is devoted to the two-dimensional case, a lambda-dependent deformation of the Smorodinski-Winternitz system is studied. It is proved that the deformation introduced by the parameter A modifies the Hamilton-Jacobi equation but preserves the existence of a multiple separability.
引用
收藏
页码:423 / 436
页数:14
相关论文
共 36 条
[1]  
[Anonymous], 2003, ADV TEXTS PHYS
[2]   A NOTE ON THE SCHRODINGER-EQUATION FOR THE X2 + LAMBDA-X2/(1 + GX2) POTENTIAL [J].
BESSIS, N ;
BESSIS, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (12) :2780-2785
[3]   EIGENVALUES OF LAMBDA X2M ANHARMONIC OSCILLATORS [J].
BISWAS, SN ;
DATTA, K ;
SAXENA, RP ;
SRIVASTAVA, PK ;
VARMA, VS .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (09) :1190-1195
[4]  
Bose S. K., 1990, Hadronic Journal, V13, P47
[5]   One-dimensional model of a quantum nonlinear harmonic oscillator [J].
Cariñena, JF ;
Rañada, MF ;
Santander, M .
REPORTS ON MATHEMATICAL PHYSICS, 2004, 54 (02) :285-293
[6]   A non-linear oscillator with quasi-harmonic behaviour:: two- and n-dimensional oscillators [J].
Cariñena, JF ;
Rañada, MF ;
Santander, M ;
Senthilvelan, M .
NONLINEARITY, 2004, 17 (05) :1941-1963
[7]   A remark on rational isochronous potentials [J].
Chalykh, OA ;
Veselov, AP .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2005, 12 (Suppl 1) :179-183
[8]   Asymptotic iteration method for eigenvalue problems [J].
Ciftci, H ;
Hall, RL ;
Saad, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (47) :11807-11816
[9]   INVARIANTS FOR THE TIME-DEPENDENT HARMONIC-OSCILLATOR .1. [J].
COLEGRAVE, RK ;
ABDALLA, MS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (16) :3805-3815
[10]   Quadratic Poisson algebras of two-dimensional classical superintegrable systems and quadratic associative algebras of quantum superintegrable systems [J].
Daskaloyannis, C .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (03) :1100-1119