A nonlinear deformation of the isotonic oscillator and the Smorodinski-Winternitz system:: Integrability and superintegrability

被引:21
作者
Cariñena, JF
Rañada, MF
Santander, M
机构
[1] Univ Zaragoza, Fac Ciencias, Dept Fis Teor, E-50009 Zaragoza, Spain
[2] Univ Valladolid, Fac Ciencias, Dept Fis Teor, E-47011 Valladolid, Spain
关键词
nonlinear equations; nonlinear oscillators; integrability; superintegrability; Hamilton-Jacobi separability;
D O I
10.1070/RD2005v010n04ABEH000324
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The properties of a nonlinear deformation of the isotonic oscillator are studied. This deformation affects to both the kinetic term and the potential and depends on a parameter lambda in such a way that for lambda = 0 all the characteristics of of the classical system are recovered. In the second part, that is devoted to the two-dimensional case, a lambda-dependent deformation of the Smorodinski-Winternitz system is studied. It is proved that the deformation introduced by the parameter A modifies the Hamilton-Jacobi equation but preserves the existence of a multiple separability.
引用
收藏
页码:423 / 436
页数:14
相关论文
共 36 条
  • [1] [Anonymous], 2003, ADV TEXTS PHYS
  • [2] A NOTE ON THE SCHRODINGER-EQUATION FOR THE X2 + LAMBDA-X2/(1 + GX2) POTENTIAL
    BESSIS, N
    BESSIS, G
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (12) : 2780 - 2785
  • [3] EIGENVALUES OF LAMBDA X2M ANHARMONIC OSCILLATORS
    BISWAS, SN
    DATTA, K
    SAXENA, RP
    SRIVASTAVA, PK
    VARMA, VS
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (09) : 1190 - 1195
  • [4] Bose S. K., 1990, Hadronic Journal, V13, P47
  • [5] One-dimensional model of a quantum nonlinear harmonic oscillator
    Cariñena, JF
    Rañada, MF
    Santander, M
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2004, 54 (02) : 285 - 293
  • [6] A non-linear oscillator with quasi-harmonic behaviour:: two- and n-dimensional oscillators
    Cariñena, JF
    Rañada, MF
    Santander, M
    Senthilvelan, M
    [J]. NONLINEARITY, 2004, 17 (05) : 1941 - 1963
  • [7] A remark on rational isochronous potentials
    Chalykh, OA
    Veselov, AP
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2005, 12 (Suppl 1) : 179 - 183
  • [8] Asymptotic iteration method for eigenvalue problems
    Ciftci, H
    Hall, RL
    Saad, N
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (47): : 11807 - 11816
  • [9] INVARIANTS FOR THE TIME-DEPENDENT HARMONIC-OSCILLATOR .1.
    COLEGRAVE, RK
    ABDALLA, MS
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (16): : 3805 - 3815
  • [10] Quadratic Poisson algebras of two-dimensional classical superintegrable systems and quadratic associative algebras of quantum superintegrable systems
    Daskaloyannis, C
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (03) : 1100 - 1119