Phase-separation phenomenon of NiGePt alloy on n-Ge by microwave annealing

被引:2
作者
Hsu, Chung-Chun [1 ]
Lin, Kun-Lin [2 ]
Chi, Wei-Chun [1 ]
Chou, Chen-Han [1 ]
Luo, Guang-Li [2 ]
Lee, Yao-Jen [2 ]
Chien, Chao-Hsin [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Elect Engn, 1001 Ta Hsueh Rd, Hsinchu 300, Taiwan
[2] Natl Nano Device Labs, 1001-1 Ta Hsueh Rd, Hsinchu 300, Taiwan
关键词
Microwave-activated annealing; NiGePt; Phase-separation alloy; Schottky junction; MORPHOLOGICAL STABILITY; THERMAL-STABILITY; SI SUBSTRATE; GERMANOSILICIDE; GERMANIDE; FILMS; SOURCE/DRAIN; DIFFUSION; MOSFETS;
D O I
10.1016/j.jallcom.2018.01.119
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
During the formation of distinct bilayer NiGePt alloy, a phase-separation phenomenon was observed using microwave annealing and structural engineering. The microstructures of bilayer NiGePt [PtGe(Ni)-NiGe(Pt)] alloys fabricated with 10-nm Ni and various thicknesses of Pt (5, 10, and 15 nm) were characterized. Within the same thermal budget as microwave annealing, the diffusion of Ni exhibited stronger alloy formation ability with Ge and drilled through the Pt layer without resistance. The higher diffusivity of Ni atoms dominated the diffusion of Ni through the Pt layer to form a stable crystalline layer, NiGe(Pt). Ge diffused outwardly toward the Pt layer to form a PtGe(Ni) layer. This special phenomenon of bilayer alloy formation was elucidated using nanobeam electron diffraction by transmission electron microscopy in conjunction with energy-dispersive spectrometry. Comparing the differences in metal alloys between microwave and rapid thermal annealing, microwave annealing formed a bilayer alloy more apparently than rapid thermal annealing. The results and electrical characteristics indicated that a thicker Pt layer for forming a bilayer NiGePt alloy with alloy separation could also effectively improve the leakage current of NiGePt [PtGe(Ni)- NiGe(Pt)]/n-Ge Schottky junctions. (c) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:262 / 267
页数:6
相关论文
共 28 条
[1]   High-Performance Germanium p- and n-MOSFETs With NiGe Source/Drain [J].
Chen, Che-Wei ;
Tzeng, Ju-Yuan ;
Chung, Cheng-Ting ;
Chien, Hung-Pin ;
Chien, Chao-Hsin ;
Luo, Guang-Li .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (08) :2656-2661
[2]  
Chou C.-H., 2017, IEEE T ELECTRON DEV, V64, P1
[3]   Ohmic contacts to n-type germanium with low specific contact resistivity [J].
Gallacher, K. ;
Velha, P. ;
Paul, D. J. ;
MacLaren, I. ;
Myronov, M. ;
Leadley, D. R. .
APPLIED PHYSICS LETTERS, 2012, 100 (02)
[4]   Reaction of thin Ni films with Ge: Phase formation and texture [J].
Gaudet, S. ;
Detavernier, C. ;
Lavoie, C. ;
Desjardins, P. .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (03)
[5]   Experimental Realization of a Ternary-Phase Alloy Through Microwave-Activated Annealing for Ge Schottky pMOSFETs [J].
Hsu, Chung-Chun ;
Chi, Wei-Chun ;
Tsai, Yi-He ;
Chou, Chen-Han ;
Chen, Che-Wei ;
Chien, Hung-Pin ;
Chuang, Shang-Shiun ;
Luo, Guang-Li ;
Lee, Yao-Jen ;
Chien, Chao-Hsin .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (07) :2714-2721
[6]   High-Performance Schottky Contact Quantum-Well Germanium Channel pMOSFET With Low Thermal Budget Process [J].
Hsu, Chung-Chun ;
Tsai, Yi-He ;
Chen, Che-Wei ;
Li, Jyun-Han ;
Lin, Yu-Hsien ;
Lee, Yao-Jen ;
Luo, Guang-Li ;
Chien, Chao-Hsin .
IEEE ELECTRON DEVICE LETTERS, 2016, 37 (01) :8-11
[7]   Effect of Pt on agglomeration and Ge out diffusion in Ni(Pt) germanosilicide [J].
Jin, LJ ;
Pey, KL ;
Choi, WK ;
Fitzgerald, EA ;
Antoniadis, DA ;
Pitera, AJ ;
Lee, ML ;
Chi, DZ ;
Rahman, MA ;
Osipowicz, T ;
Tung, CH .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (03)
[8]  
Kang M. H., 2010, P IEEE INT C EL DEV, P1
[9]   Thermally Robust Ni Germanide Technology Using Cosputtering of Ni and Pt for High-Performance Nanoscale Ge MOSFETs [J].
Kang, Min-Ho ;
Shin, Hong-Sik ;
Yoo, Jung-Ho ;
Lee, Ga-Won ;
Oh, Jung-Woo ;
Majhi, Prashant ;
Jammy, Raj ;
Lee, Hi-Deok .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2012, 11 (04) :769-776
[10]   In-situ X-ray Diffraction study of Metal Induced Crystallization of amorphous silicon [J].
Knaepen, W. ;
Detavernier, C. ;
Van Meirhaeghe, R. L. ;
Sweet, J. Jordan ;
Lavoie, C. .
THIN SOLID FILMS, 2008, 516 (15) :4946-4952