SIMPLIFIED MAXIMUM LIKELIHOOD INFERENCE BASED ON THE LIKELIHOOD DECOMPOSITION FOR MISSING DATA

被引:0
|
作者
Jung, Sangah [1 ]
Park, Sangun [1 ]
机构
[1] Yonsei Univ, Dept Appl Stat, Seoul 120749, South Korea
基金
新加坡国家研究基金会;
关键词
Fisher information ratio; likelihood decomposition; non-monotone missing data; MULTIVARIATE NORMAL-DISTRIBUTION; INCOMPLETE-DATA; CONTINGENCY-TABLES; SAMPLE-SURVEYS; EM ALGORITHM; PARAMETERS; MODELS;
D O I
10.1111/anzs.12040
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose an estimation method when sample data are incomplete. We decompose the likelihood according to missing patterns and combine the estimators based on each likelihood weighting by the Fisher information ratio. This approach provides a simple way of estimating parameters, especially for non-monotone missing data. Numerical examples are presented to illustrate this method.
引用
收藏
页码:271 / 283
页数:13
相关论文
共 50 条
  • [41] Maximum Likelihood Inference of Time-Scaled Cell Lineage Trees with Mixed-Type Missing Data
    Mai, Uyen
    Chu, Gillian
    Raphael, Benjamin J.
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, RECOMB 2024, 2024, 14758 : 360 - 363
  • [42] Targeted Maximum Likelihood Based Causal Inference: Part II
    van der Laan, Mark J.
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2010, 6 (02):
  • [43] Jackknife Maximum Likelihood Estimates for a Bivariate Normal Distribution with Missing Data
    Sinsomboonthong, Juthaphorn
    THAILAND STATISTICIAN, 2011, 9 (02): : 151 - 169
  • [44] Maximum Likelihood Estimators in Growth Curve Model with Monotone Missing Data
    Yagi A.
    Seo T.
    Fujikoshi Y.
    American Journal of Mathematical and Management Sciences, 2021, 40 (01) : 1 - 16
  • [45] Full maximum likelihood estimation of polychoric and polyserial correlations with missing data
    Song, XY
    Lee, SY
    MULTIVARIATE BEHAVIORAL RESEARCH, 2003, 38 (01) : 57 - 79
  • [46] A Missing Data Imputation Approach Using Clustering and Maximum Likelihood Estimation
    Albayrak, Muammer
    Turhan, Kemal
    Kurt, Burcin
    2017 MEDICAL TECHNOLOGIES NATIONAL CONGRESS (TIPTEKNO), 2017,
  • [47] Marginal maximum likelihood estimation of conditional autoregressive models with missing data
    Suesse, Thomas
    Zammit-Mangion, Andrew
    STAT, 2019, 8 (01):
  • [48] MLREML: A computer program for the inference of spatial covariance parameters by maximum likelihood and restricted maximum likelihood
    PardoIguzquiza, E
    COMPUTERS & GEOSCIENCES, 1997, 23 (02) : 153 - 162
  • [49] DECOMPOSITION OF SEISMOGRAMS BY MAXIMUM LIKELIHOOD ESTIMATION
    WATSON, RJ
    GEOPHYSICS, 1965, 30 (06) : 1248 - &
  • [50] SEMIPARAMETRIC MAXIMUM LIKELIHOOD INFERENCE FOR TRUNCATED OR BIASED-SAMPLING DATA
    Liu, Hao
    Ning, Jing
    Qin, Jing
    Shen, Yu
    STATISTICA SINICA, 2016, 26 (03) : 1087 - 1115