Agent-Based Model of Therapeutic Adipose-Derived Stromal Cell Trafficking during Ischemia Predicts Ability To Roll on P-Selectin

被引:53
作者
Bailey, Alexander M. [1 ]
Lawrence, Michael B. [1 ]
Shang, Hulan [2 ]
Katz, Adam J. [2 ]
Peirce, Shayn M. [1 ]
机构
[1] Univ Virginia, Dept Biomed Engn, Charlottesville, VA 22903 USA
[2] Univ Virginia, Dept Plast Surg, Charlottesville, VA USA
关键词
ENDOTHELIAL PROGENITOR CELLS; LEUKOCYTE ADHESION; IN-VIVO; SKELETAL-MUSCLE; MICE DEFICIENT; SHEAR; INFLAMMATION; MOUSE; MICROCIRCULATION; EXPRESSION;
D O I
10.1371/journal.pcbi.1000294
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Intravenous delivery of human adipose-derived stromal cells (hASCs) is a promising option for the treatment of ischemia. After delivery, hASCs that reside and persist in the injured extravascular space have been shown to aid recovery of tissue perfusion and function, although low rates of incorporation currently limit the safety and efficacy of these therapies. We submit that a better understanding of the trafficking of therapeutic hASCs through the microcirculation is needed to address this and that selective control over their homing (organ- and injury-specific) may be possible by targeting bottlenecks in the homing process. This process, however, is incredibly complex, which merited the use of computational techniques to speed the rate of discovery. We developed a multicell agent-based model (ABM) of hASC trafficking during acute skeletal muscle ischemia, based on over 150 literature-based rules instituted in Netlogo and MatLab software programs. In silico, trafficking phenomena within cell populations emerged as a result of the dynamic interactions between adhesion molecule expression, chemokine secretion, integrin affinity states, hemodynamics and microvascular network architectures. As verification, the model reasonably reproduced key aspects of ischemia and trafficking behavior including increases in wall shear stress, upregulation of key cellular adhesion molecules expressed on injured endothelium, increased secretion of inflammatory chemokines and cytokines, quantified levels of monocyte extravasation in selectin knockouts, and circulating monocyte rolling distances. Successful ABM verification prompted us to conduct a series of systematic knockouts in silico aimed at identifying the most critical parameters mediating hASC trafficking. Simulations predicted the necessity of an unknown selectin-binding molecule to achieve hASC extravasation, in addition to any rolling behavior mediated by hASC surface expression of CD15s, CD34, CD62e, CD62p, or CD65. In vitro experiments confirmed this prediction; a subpopulation of hASCs slowly rolled on immobilized P-selectin at speeds as low as 2 mu m/s. Thus, our work led to a fundamentally new understanding of hASC biology, which may have important therapeutic implications.
引用
收藏
页数:17
相关论文
共 57 条
  • [1] CD24, a mucin-type glycoprotein, is a ligand for P-selectin on human tumor cells
    Aigner, S
    Sthoeger, ZM
    Fogel, M
    Weber, E
    Zarn, J
    Ruppert, M
    Zeller, Y
    Vestweber, D
    Stahel, R
    Sammar, M
    Altevogt, P
    [J]. BLOOD, 1997, 89 (09) : 3385 - 3395
  • [2] HEAT-STABLE ANTIGEN (MOUSE CD24) SUPPORTS MYELOID CELL-BINDING TO ENDOTHELIAL AND PLATELET P-SELECTIN
    AIGNER, S
    RUPPERT, M
    HUBBE, M
    SAMMAR, M
    STHOEGER, Z
    BUTCHER, EC
    VESTWEBER, D
    ALTEVOGT, P
    [J]. INTERNATIONAL IMMUNOLOGY, 1995, 7 (10) : 1557 - 1565
  • [3] Functional binding of human adipose-derived stromal cells - Effects of extraction method and hypoxia pretreatment
    Amos, Peter J.
    Bailey, Alexander M.
    Shang, Hulan
    Katz, Adam J.
    Lawrence, Michael B.
    Peirce, Shayn M.
    [J]. ANNALS OF PLASTIC SURGERY, 2008, 60 (04) : 437 - 444
  • [4] [Anonymous], 1998, NetLogo Flocking model
  • [5] Arteriolar remodeling following ischemic injury extends from capillary to large arteriole in the microcirculation
    Bailey, Alexander M.
    O'Neill, Thomas J.
    Morris, Cassandra E.
    Peirce, Shayn M.
    [J]. MICROCIRCULATION, 2008, 15 (05) : 389 - 404
  • [6] Multi-cell agent-based simulation of the microvasculature to study the dynamics of circulating inflammatory cell trafficking
    Bailey, Alexander M.
    Thorne, Bryan C.
    Peirce, Shayn M.
    [J]. ANNALS OF BIOMEDICAL ENGINEERING, 2007, 35 (06) : 916 - 936
  • [7] Neurovascular alignment in adult mouse skeletal muscles
    Bearden, SE
    Segal, SS
    [J]. MICROCIRCULATION, 2005, 12 (02) : 161 - 167
  • [8] Boron W.F. Boulpaep., 2003, MED PHYSL CELLULAR M
  • [9] Remodeling in the microcirculation of rat skeletal muscle during chronic ischemia
    Brown, MD
    Kent, J
    Kelsall, CJ
    Milkiewicz, M
    Hudlicka, O
    [J]. MICROCIRCULATION, 2003, 10 (02) : 179 - 191
  • [10] Sialyl Lewis(x)/E-selectin-mediate rolling in a cell-free system
    Brunk, DK
    Goetz, DJ
    Hammer, DA
    [J]. BIOPHYSICAL JOURNAL, 1996, 71 (05) : 2902 - 2907