SOME THEOREMS ON BERNOULLI AND EULER NUMBERS

被引:0
作者
Hwang, K. -W. [1 ]
Dolgy, D. V. [2 ]
Kim, D. S. [3 ]
Kim, T. [4 ]
Lee, S. H. [5 ]
机构
[1] Dong A Univ, Dept Math, Pusan 604714, South Korea
[2] Kwangwoon Univ, Seoul 139701, South Korea
[3] Sogang Univ, Dept Math, Seoul 121741, South Korea
[4] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[5] Kwangwoon Univ, Div Gen Educ, Seoul 139701, South Korea
关键词
Bernoulli numbers; Euler numbers; p-adic integrals; BERNSTEIN;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
From differential operator and the generating functions of Bernoulli and Euler polynomials, we derive some new theorems on Bernoulli and Euler numbers. By using integral formulae of arithmetical properties relating to the Bernoulli and Euler polynomials, we obtain new identities on Bernoulli and Euler numbers. Finally we give some new properties on Bernoulli and Euler numbers arising from the p-adic integrals on Z(p)
引用
收藏
页码:285 / 297
页数:13
相关论文
共 50 条
  • [41] A note on Bernoulli numbers
    Muthumalai, Ramesh Kumar
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2013, 19 (01) : 59 - 65
  • [42] Higher-order convolutions for Bernoulli and Euler polynomials
    Agoh, Takashi
    Dilcher, Karl
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 419 (02) : 1235 - 1247
  • [43] Some Symmetric Identities Involving Fubini Polynomials and Euler Numbers
    Zhao Jianhong
    Chen Zhuoyu
    SYMMETRY-BASEL, 2018, 10 (08):
  • [44] Bernoulli, Euler, permutations and quantum algebras
    Hodges, Andrew
    Sukumar, C. V.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2086): : 2401 - 2414
  • [45] SOME REMARKS ON THE RIEMANN ZETA FUNCTION AND PRIME FACTORS OF NUMERATORS OF BERNOULLI NUMBERS
    Luca, Florian
    Pizarro-Madariaga, Amalia
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 86 (02) : 216 - 223
  • [46] A note on the denominators of Bernoulli numbers
    Komatsu, Takao
    Luca, Florian
    Pita Ruiz, Claudio De J., V
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2014, 90 (05) : 71 - 72
  • [47] Recursion Formulas for Bernoulli Numbers
    Kim, Aeran
    THAI JOURNAL OF MATHEMATICS, 2022, 20 (01): : 55 - 67
  • [48] BERNOULLI NUMBERS AND SOLITONS - REVISITED
    Rzadkowski, Grzegorz
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2010, 17 (01) : 121 - 126
  • [49] Bernoulli numbers and symmetric functions
    Mircea Merca
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [50] Cubic harmonics and Bernoulli numbers
    Iwasaki, Katsunori
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (06) : 1216 - 1234