Singular values of products of random matrices and polynomial ensembles

被引:67
|
作者
Kuijlaars, Arno B. J. [1 ]
Stivigny, Dries [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200b,Box 2400, B-3001 Leuven, Belgium
关键词
Random matrices; singular values; polynomial ensembles; Meijer G-functions;
D O I
10.1142/S2010326314500117
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Akemann, Ipsen, and Kieburg showed recently that the squared singular values of a product of M complex Ginibre matrices are distributed according to a determinantal point process. We introduce the notion of a polynomial ensemble and show how their result can be interpreted as a transformation of polynomial ensembles. We also show that the squared singular values of the product of M - 1 complex Ginibre matrices with one truncated unitary matrix is a polynomial ensemble, and we derive a double integral representation for the correlation kernel associated with this ensemble. We use this to calculate the scaling limit at the hard edge, which turns out to be the same scaling limit as the one found by Kuijlaars and Zhang for the squared singular values of a product of M complex Ginibre matrices. Our final result is that these limiting kernels also appear as scaling limits for the biorthogonal ensembles of Borodin with parameter theta > 0, in case theta or 1/theta is an integer. This further supports the conjecture that these kernels have a universal character.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Products of random matrices from polynomial ensembles
    Kieburg, Mario
    Koesters, Holger
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (01): : 98 - 126
  • [2] On the singular values of random matrices
    Mendelson, Shahar
    Paouris, Grigoris
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (04) : 823 - 834
  • [3] On the singular values of Gaussian random matrices
    Shen, JH
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 326 (1-3) : 1 - 14
  • [4] On the interval of fluctuation of the singular values of random matrices
    Guedon, Olivier
    Litvak, Alexander E.
    Pajor, Alain
    Tomczak-Jaegermann, Nicole
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (05) : 1469 - 1505
  • [5] EIGENVALUES AND SINGULAR-VALUES OF CERTAIN RANDOM MATRICES
    ANDREW, AL
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 30 (02) : 165 - 171
  • [6] Spectral densities of singular values of products of Gaussian and truncated unitary random matrices
    Neuschel, Thorsten
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2020, 9 (04)
  • [7] RANDOM MATRICES: THE DISTRIBUTION OF THE SMALLEST SINGULAR VALUES
    Tao, Terence
    Vu, Van
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (01) : 260 - 297
  • [8] Random Matrices: the Distribution of the Smallest Singular Values
    Terence Tao
    Van Vu
    Geometric and Functional Analysis, 2010, 20 : 260 - 297
  • [9] JACOBI POLYNOMIAL MOMENTS AND PRODUCTS OF RANDOM MATRICES
    Gawronski, Wolfgang
    Neuschel, Thorsten
    Stivigny, Dries
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (12) : 5251 - 5263
  • [10] Non-asymptotic Theory of Random Matrices: Extreme Singular Values
    Rudelson, Mark
    Vershynin, Roman
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL III: INVITED LECTURES, 2010, : 1576 - 1602