Global large solutions to 3-D inhomogeneous Navier-Stokes system with one slow variable

被引:29
作者
Chemin, Jean-Yves [1 ]
Paicu, Marius [2 ]
Zhang, Ping [3 ,4 ]
机构
[1] Univ Paris 06, Lab JL Lions, UMR 7598, F-75230 Paris 05, France
[2] Univ Bordeaux 1, Inst Math Bordeaux, F-33405 Talence, France
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
关键词
Inhomogeneous Navier-Stokes equations; Littlewood-Paley theory; Anisotropic Besov spaces; EQUATIONS; DENSITY; FLUIDS;
D O I
10.1016/j.jde.2013.09.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under a nonlinear smallness condition on the isotropic critical Besov norm to the fluctuation of the initial density and the critical anisotropic Besov norm of the horizontal components of the initial velocity, which have to be exponentially small compared with the critical anisotropic Besov norm to the third component of the initial velocity, we investigate the global wellposedness of 3-D inhomogeneous incompressible Navier-Stokes equations (1.2) in the critical Besov spaces. The novelty of this results is that the isotropic space structure to the inhomogeneity of the initial density function is consistent with the propagation of anisotropic regularity for the velocity field. In the second part, we apply the same idea to prove the global wellposedness of (1.2) with some large data which are slowly varying in one direction. (C) 2013 Elseviehsr Inc. All rights reserved.
引用
收藏
页码:223 / 252
页数:30
相关论文
共 26 条
[1]  
Abidi H, 2007, REV MAT IBEROAM, V23, P537
[2]   Global existence for an nonhomogeneous fluid [J].
Abidi, Hammadi ;
Paicu, Marius .
ANNALES DE L INSTITUT FOURIER, 2007, 57 (03) :883-917
[3]   Well-posedness of 3-D inhomogeneous Navier-Stokes equations with highly oscillatory initial velocity field [J].
Abidi, Hammadi ;
Gui, Guilong ;
Zhang, Ping .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (02) :166-203
[4]   On the Wellposedness of Three-Dimensional Inhomogeneous Navier-Stokes Equations in the Critical Spaces [J].
Abidi, Hammadi ;
Gui, Guilong ;
Zhang, Ping .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 204 (01) :189-230
[5]   On the Decay and Stability of Global Solutions to the 3D Inhomogeneous Navier-Stokes Equations [J].
Abidi, Hammadi ;
Gui, Guilong ;
Zhang, Ping .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (06) :832-881
[6]  
ANTONTSEV SN, 1990, STUD MATH APPL, V22
[7]  
Bahouri H., 2011, GRUNDLEHREN MATH WIS, V343
[8]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[9]   On the global wellposedness to the 3-D incompressible anisotropic Navier- Stokes equations [J].
Chemin, Jean-Yves ;
Zhang, Ping .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 272 (02) :529-566
[10]   Global regularity for some classes of large solutions to the Navier-Stokes equations [J].
Chemin, Jean-Yves ;
Gallagher, Isabelle ;
Paicu, Marius .
ANNALS OF MATHEMATICS, 2011, 173 (02) :983-1012