Halpern's type iterations with perturbations in Hilbert spaces: equilibrium solutions and fixed points

被引:10
作者
Chuang, Chih-Sheng [1 ]
Lin, Lai-Jiu [1 ]
Takahashi, Wataru [1 ,2 ]
机构
[1] Natl Changhua Univ Educ, Dept Math, Changhua, Taiwan
[2] Tokyo Inst Technol, Dept Math & Comp Sci, Tokyo 1528552, Japan
关键词
Quasi-non expansive mapping; Equilibrium problem; Perturbation; STRONG-CONVERGENCE THEOREMS; NONEXPANSIVE-MAPPINGS; NONLINEAR MAPPINGS; HYBRID MAPPINGS; WEAK; APPROXIMATION;
D O I
10.1007/s10898-012-9911-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider an iteration process of Halpern's type for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points for a quasi-nonexpansive mapping with perturbation in a Hilbert space and then prove a strong convergence theorem for such iterations. Using this result, we obtain new strong convergence theorems in a Hilbert space. In particular, we solve partially an open problem posed by Kurokawa and Takahashi (Nonlinear Anal 73:1562-1568, 2010) concerning Halpern's iterations.
引用
收藏
页码:1591 / 1601
页数:11
相关论文
共 22 条
[1]   Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space [J].
Aoyama, Koji ;
Kimura, Yasunori ;
Takahashi, Wataru ;
Toyoda, Masashi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (08) :2350-2360
[2]  
Aoyama K, 2010, J NONLINEAR CONVEX A, V11, P335
[3]  
Blum E., 1994, Math. Stud., V63, P127
[4]  
Combettes PL, 2005, J NONLINEAR CONVEX A, V6, P117
[5]   FIXED POINTS OF NONEXPANDING MAPS [J].
HALPERN, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :957-&
[6]  
Hojo M., 2011, SCI MATH JPN, V73, P31
[7]   COMMON FIXED-POINT THEORY OF SINGLEVALUED MAPPINGS AND MULTIVALUED MAPPINGS [J].
ITOH, S ;
TAKAHASHI, W .
PACIFIC JOURNAL OF MATHEMATICS, 1978, 79 (02) :493-508
[8]   FIXED POINT THEOREMS AND WEAK CONVERGENCE THEOREMS FOR GENERALIZED HYBRID MAPPINGS IN HILBERT SPACES [J].
Kocourek, Pavel ;
Takahashi, Wataru ;
Yao, Jen-Chih .
TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (06) :2497-2511
[9]   Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces [J].
Kohsaka, Fumiaki ;
Takahashi, Wataru .
ARCHIV DER MATHEMATIK, 2008, 91 (02) :166-177
[10]   Weak and strong convergence theorems for nonspreading mappings in Hilbert spaces [J].
Kurokawa, Yu ;
Takahashi, Wataru .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (06) :1562-1568