Global boundedness of solutions to a quasilinear parabolic-parabolic Keller-Segel system with logistic source

被引:8
作者
Zhang, Yinle [1 ]
Zheng, Sining [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Keller-Segel system; Chemotaxis; Logistic source; Global boundedness; TIME BLOW-UP; CHEMOTAXIS SYSTEM;
D O I
10.1016/j.aml.2015.08.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a quasilinear parabolic parabolic Keller-Segel system with a logistic type source u(t) = del . (phi(u)del u) - del . (psi(u)del v) + g(u), v(t) = Delta v - v + u in a smooth bounded domain Omega subset of R-n, n >= 1, subject to nonnegative initial data and homogeneous Neumann boundary conditions, where phi, psi and g are smooth positive functions satisfying c(1)s(p) <= phi(s) and c(1)s(q) <= psi(s) <= c(2)s(q) for p, q is an element of R s >= s(0) > 1 g(s) <= as - mu s(k) for s > 0, with constants a >= 0, mu, c(1), c(2) > 0, and the extended logistic exponent k > 1 instead of the ordinary k = 2. It is proved that if q < k - 1, or q = k - 1 with mu properly large that mu > mu(0) for some mu(0) > 0, then there exists a classical solution which is global in time and bounded. This shows the exact way of the logistic exponent k > 1 effecting the behavior of solutions. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:15 / 20
页数:6
相关论文
共 21 条
[1]  
Alikakos Nicholas D., 1979, Comm. Partial Differential Equations, V4, P827, DOI DOI 10.1080/03605307908820113
[2]  
Cao X., ARXIV150105383
[3]   Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source [J].
Cao, Xinru ;
Zheng, Sining .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (15) :2326-2330
[4]   Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source [J].
Cao, Xinru .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) :181-188
[5]   Finite-time blow-up in a quasilinear system of chemotaxis [J].
Cieslak, Tomasz ;
Winkler, Michael .
NONLINEARITY, 2008, 21 (05) :1057-1076
[6]   Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions [J].
Cieslak, Tomasz ;
Stinner, Christian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) :5832-5851
[7]   Boundedness vs. blow-up in a chemotaxis system [J].
Horstmann, D ;
Winkler, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 215 (01) :52-107
[8]  
Horstmann D., 2003, Jahresber. Dtsch. Math.-Ver., V105, P103
[9]   ON EXPLOSIONS OF SOLUTIONS TO A SYSTEM OF PARTIAL-DIFFERENTIAL EQUATIONS MODELING CHEMOTAXIS [J].
JAGER, W ;
LUCKHAUS, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 329 (02) :819-824
[10]  
Osaki K., 2002, Adv. Math. Sci. Appl, V12, P587