Lithium-Ion Batteries' Energy Efficiency Prediction Using Physics-Based and State-of-the-Art Artificial Neural Network-Based Models

被引:14
作者
Nazari, Arash [1 ]
Kavian, Soheil [2 ]
Nazari, Ashkan [3 ]
机构
[1] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA
[2] Islamic Azad Univ, Sci & Res Branch, Dept Mech Engn, Tehran 24061123, Iran
[3] Virginia Tech, Dept Comp Sci, Dept Mech Engn, Blacksburg, VA 24061 USA
来源
JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME | 2020年 / 142卷 / 10期
关键词
lithium-ion battery; energy efficiency contour; energy storage; artificial neural network; heat energy generation; storage; transfer; renewable energy; THERMAL MANAGEMENT; CHARGE ESTIMATION; LIFE;
D O I
10.1115/1.4047313
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The new generation of lithium-ion batteries (LIBs) possesses considerable energy density that arise the safety concern much more than before. One of the main issues associated with LIB safety is the heat generation and thermal runaway in LIBs. The importance of characterizing the heat generation in LIBs is reflected in numerous studies. The heat generation in LIBs can be related to energy efficiency as well. In this work, the heat generation in LIB is predicted using two different approaches (physics-based and machine learning-based approaches). A validated multiphysics-based and neural network-based models for commercial LIBs with lithium iron phosphate/graphite (LFP/G), lithium manganese oxide/graphite (LMO/G), and lithium cobalt oxide/graphite (LCO/G) electrodes are used to predict the heat generation toward shaping the LIB energy efficiency contours, illustrating the effect of the nominal capacity as a key parameter in the manufacturing process of the LIBs. The developed contours can provide the energy systems designers a comprehensive view over the accurate efficiency of LIBs when they need to incorporate LIBs into their devices. In addition, the effect of temperature on charge/discharge energy efficiency of LFP/graphite LIBs is obtained, and the performance of three typical LIBs in the market at a very low temperature is compared, which have a wide range of applications from consumer applications such as electric vehicles (EVs) to industrial applications such as uninterruptible power sources (UPSes).
引用
收藏
页数:7
相关论文
共 50 条
[31]   A Temporal Fusion Memory Network-Based Method for State-of-Health Estimation of Lithium-Ion Batteries [J].
Chen, Kang ;
Wang, Dandan ;
Guo, Wenwen .
BATTERIES-BASEL, 2024, 10 (08)
[32]   Hybrid Physics-Based Neural Network Models for Diesel Combustion Phasing Prediction [J].
Ankobea-Ansah, King L. ;
Hall, Carrie M. .
IFAC PAPERSONLINE, 2022, 55 (37) :621-626
[33]   State-of-health prediction of lithium-ion batteries using feature fusion and a hybrid neural network model [J].
Li, Yang ;
Gao, Guoqiang ;
Chen, Kui ;
He, Shuhang ;
Liu, Kai ;
Xin, Dongli ;
Luo, Yang ;
Long, Zhou ;
Wu, Guangning .
ENERGY, 2025, 319
[34]   Remaining useful life prediction of lithium-ion batteries based on wavelet denoising and transformer neural network [J].
Hu, Wangyang ;
Zhao, Shaishai .
FRONTIERS IN ENERGY RESEARCH, 2022, 10
[35]   State-of-the-Art and Energy Management System of Lithium-Ion Batteries in Electric Vehicle Applications:Issues and Recommendations [J].
Hannan, Mahammad A. ;
Hoque, Md. Murshadul ;
Hussain, Aini ;
Yusof, Yushaizad ;
Ker, Pin Jern .
IEEE ACCESS, 2018, 6 :19362-19378
[36]   A generic physics-informed neural network framework for lithium-ion batteries state of health estimation [J].
Tian, Aina ;
He, Luyao ;
Ding, Tao ;
Dong, Kailang ;
Wang, Yuqin ;
Jiang, Jiuchun .
ENERGY, 2025, 332
[37]   A vision transformer-based deep neural network for state of health estimation of lithium-ion batteries [J].
Chen, Liping ;
Xie, Siqiang ;
Lopes, Antonio M. ;
Bao, Xinyuan .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 152
[38]   State of charge estimation of lithium-ion batteries based on PSO-TCN-Attention neural network [J].
Li, Feng ;
Zuo, Wei ;
Zhou, Kun ;
Li, Qingqing ;
Huang, Yuhan .
JOURNAL OF ENERGY STORAGE, 2024, 84
[39]   Self-attention network-based state of charge estimation for lithium-ion batteries with gapped temperature data [J].
Song, Youngbin ;
Park, Shina ;
Kim, Sang Woo ;
Koo, Gyogwon .
EXPERT SYSTEMS WITH APPLICATIONS, 2025, 261
[40]   Short-Circuit Detection in Lithium-Ion Batteries Using Machine Learning: Analysis and Comparison with Physics-Based Method [J].
Patil, Shubham Sambhaji ;
Bharathraj, Sagar ;
Lee, Myeong-Jae ;
Adiga, Shashishekar P. ;
Mayya, K. Subramanya .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (10)