Assessment of Disordered Voices Using Empirical Mode Decomposition in the Log-Spectral Domain

被引:0
|
作者
Kacha, A. [1 ]
Grenez, F. [1 ]
Schoentgen, J. [1 ]
机构
[1] Univ Jijel, Lab Phys Rayonnement & Applicat, Jijel, Algeria
来源
13TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2012 (INTERSPEECH 2012), VOLS 1-3 | 2012年
关键词
Disordered voices; empirical mode decomposition; harmonic-to-noise ratio;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Empirical mode decomposition (EMD) algorithm is proposed as an alternative to decompose the log of the magnitude spectrum of the speech signal into its harmonic, envelope and noise components and the harmonic-to-noise ratio is used to summarize the degree of disturbance in the speech signal. The empirical mode decomposition algorithm is a tool for the analysis of multi-component signals. The analysis method does not require a priori fixed basis function like conventional analysis methods (e.g. Fourier transform and wavelet transform). The proposed method is tested on synthetic vowels and natural speech. The corpus of synthetic vowels comprises 48 stimuli of synthetic sounds [a] that combine three values of vocal frequency, four levels of jitter frequency and four levels of additive noise. The corpora of natural speech comprise a concatenation of the vowel [a] with two Dutch sentences produced by 28 normophonic and 223 speakers with different degrees of dysphonia.
引用
收藏
页码:66 / 69
页数:4
相关论文
共 50 条
  • [21] A Spectral Approach for Sifting Process in Empirical Mode Decomposition
    Niang, Oumar
    Delechelle, Eric
    Lemoine, Jacques
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (11) : 5612 - 5623
  • [22] Characterizing Atrial Fibrillation in Empirical Mode Decomposition Domain
    Saurabh Pal
    Uday Maji
    Madhuchhanda Mitra
    Journal of Medical and Biological Engineering, 2016, 36 : 693 - 703
  • [23] Characterizing Atrial Fibrillation in Empirical Mode Decomposition Domain
    Pal, Saurabh
    Maji, Uday
    Mitra, Madhuchhanda
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2016, 36 (05) : 693 - 703
  • [24] Microphone Array Post-filter in Frequency Domain for Speech Recognition Using Short-Time Log-Spectral Amplitude Estimator and Spectral Harmonic/Noise Classifier
    Salishev, Sergey
    Klotchkov, Ilya
    Barabanov, Andrey
    SPEECH AND COMPUTER, SPECOM 2017, 2017, 10458 : 525 - 534
  • [25] Qualitative assessment of intrinsic mode functions of empirical mode decomposition
    Chen, Mo
    Mandic, Danilo P.
    Kidmose, Preben
    Ungstrup, Michael
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 1905 - +
  • [26] Music and Voice Separation Using Log-Spectral Amplitude Estimator Based on Kernel Spectrogram Models Backfitting
    Lee, Jun-Yong
    Kim, Hyoung-Gook
    JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA, 2015, 34 (03): : 227 - 233
  • [27] Scaling analysis of time series using empirical mode decomposition and Hilbert spectral analysis
    Huang, Yongxiang
    Schmitt, Francois G.
    Lu, Zhiming
    Liu, Yulu
    TRAITEMENT DU SIGNAL, 2008, 25 (06) : 481 - 492
  • [28] Respiratory sound denoising using Empirical Mode Decomposition, Hurst analysis and Spectral Subtraction
    Haider, Nishi Shahnaj
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 64
  • [29] Assessment of Pain Expression in Infant Cry Signals Using Empirical Mode Decomposition
    Mijovic, B.
    Silva, M.
    Van den Bergh, B. R. H.
    Allegaert, K.
    Aerts, J. M.
    Berckmans, D.
    Van Huffel, S.
    METHODS OF INFORMATION IN MEDICINE, 2010, 49 (05) : 448 - 452
  • [30] Extreme condition strain signal reliability assessment using empirical mode decomposition
    Nasir, N. N. M.
    Abdullah, S.
    Singh, S. S. K.
    Haris, S. M.
    PROCEEDINGS OF MECHANICAL ENGINEERING RESEARCH DAY 2018 (MERD), 2018, : 23 - 24