Stress granules as crucibles of ALS pathogenesis

被引:671
|
作者
Li, Yun R. [1 ,3 ]
King, Oliver D. [4 ]
Shorter, James [2 ]
Gitler, Aaron D. [3 ]
机构
[1] Univ Penn, Perelman Sch Med, Med Scientist Training Program, Philadelphia, PA 19104 USA
[2] Univ Penn, Perelman Sch Med, Dept Biochem & Biophys, Philadelphia, PA 19104 USA
[3] Stanford Univ, Dept Genet, Sch Med, Stanford, CA 94305 USA
[4] Univ Massachusetts, Sch Med, Dept Cell & Dev Biol, Worcester, MA 01655 USA
来源
JOURNAL OF CELL BIOLOGY | 2013年 / 201卷 / 03期
基金
美国国家卫生研究院;
关键词
FRONTOTEMPORAL LOBAR DEGENERATION; AMYOTROPHIC-LATERAL-SCLEROSIS; RNA-BINDING PROTEINS; PRION-LIKE DOMAINS; NEURON DISEASES ALS; CELL-FREE FORMATION; MEDIATED TRANSLATION; AGGREGATION-PRONE; PHASE-TRANSITIONS; ENDOGENOUS TDP-43;
D O I
10.1083/jcb.201302044
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Amyotrophic lateral sclerosis (ALS) is a fatal human neurodegenerative disease affecting primarily motor neurons. Two RNA-binding proteins, TDP-43 and FUS, aggregate in the degenerating motor neurons of ALS patients, and mutations in the genes encoding these proteins cause some forms of ALS. TDP-43 and FUS and several related RNA-binding proteins harbor aggregation-promoting prion-like domains that allow them to rapidly self-associate. This property is critical for the formation and dynamics of cellular ribonucleoprotein granules, the crucibles of RNA metabolism and homeostasis. Recent work connecting TDP-43 and FUS to stress granules has suggested how this cellular pathway, which involves protein aggregation as part of its normal function, might be coopted during disease pathogenesis.
引用
收藏
页码:361 / 372
页数:12
相关论文
共 50 条
  • [41] The zebrafish as a novel model to study the pathogenesis of ALS
    Lemmens, Robin
    Van Hoecke, Annelies
    Simpson, Claire
    Broom, Wendy
    Van Den Bosch, Ludo
    Thijs, Vincent
    Carmeliet, Peter
    Brown, Robert
    Al-Chalabi, Ammar
    Robberecht, Wim
    NEUROLOGY, 2008, 70 (11) : A112 - A112
  • [42] Matrin3: Disorder and ALS Pathogenesis
    Salem, Ahmed
    Wilson, Carter J.
    Rutledge, Benjamin S.
    Dilliott, Allison
    Farhan, Sali
    Choy, Wing-Yiu
    Duennwald, Martin L.
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 8
  • [43] Gut microbiota in ALS: possible role in pathogenesis?
    McCombe, Pamela A.
    Henderson, Robert D.
    Lee, Aven
    Lee, John D.
    Woodruff, Trent M.
    Restuadi, Restuadi
    McRae, Allan
    Wray, Naomi R.
    Ngo, Shyuan
    Steyn, Frederik J.
    EXPERT REVIEW OF NEUROTHERAPEUTICS, 2019, 19 (09) : 785 - 805
  • [44] The role of PFN1 in the pathogenesis of ALS
    Teyssou, E.
    Roussel, D.
    Chartier, L.
    Bouscary, A.
    Salachas, F.
    Ravassard, P.
    Seilhean, D.
    Millecamps, S.
    JOURNAL OF NEUROCHEMISTRY, 2015, 134 : 207 - 208
  • [45] microRNA-9-in ALS pathogenesis and therapy
    Yardeni, T.
    Wang, D.
    Gao, G.
    Hornstein, E.
    FEBS JOURNAL, 2014, 281 : 270 - 270
  • [46] Old versus New Mechanisms in the Pathogenesis of ALS
    Rossi, Simona
    Cozzolino, Mauro
    Carri, Maria Teresa
    BRAIN PATHOLOGY, 2016, 26 (02) : 276 - 286
  • [47] ALS pathogenesis linked to actin barrier collapse
    Kiani, Lisa
    NATURE REVIEWS NEUROLOGY, 2024, 20 (01) : 1 - 1
  • [48] RABGGTB plays a critical role in ALS pathogenesis
    Ma, Haiyang
    Huo, Jia
    Xin, Cheng
    Yang, Jing
    Liu, Qi
    Dong, Hui
    Li, Rui
    Liu, Yaling
    BRAIN RESEARCH BULLETIN, 2024, 206
  • [49] VAPB -: New genetic clues to the pathogenesis of ALS
    Hirano, Michio
    NEUROLOGY, 2008, 70 (14) : 1161 - 1162
  • [50] Principles and Properties of Stress Granules
    Protter, David S. W.
    Parker, Roy
    TRENDS IN CELL BIOLOGY, 2016, 26 (09) : 668 - 679