Local and global parameter sensitivity within an ecophysiologically based forest landscape model

被引:24
|
作者
McKenzie, Patrick F. [1 ,2 ]
Duveneck, Matthew J. [1 ,3 ]
Morreale, Luca L. [1 ,4 ]
Thompson, Jonathan R. [1 ]
机构
[1] Harvard Univ, Harvard Forest, Petersham, MA 01360 USA
[2] Columbia Univ, Dept Ecol Evolut & Environm Biol, New York, NY 10027 USA
[3] New England Conservatory, Dept Liberal Arts, Boston, MA 02115 USA
[4] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
Uncertainty; LANDIS-II; PnET; Forest landscape model; Fourier amplitude sensitivity test; Regression tree; COUPLED REACTION SYSTEMS; CLIMATE-CHANGE; LAND-USE; RATE COEFFICIENTS; REGRESSION TREES; SIMULATION-MODEL; FUTURE FOREST; WATER YIELD; UNCERTAINTIES; NITROGEN;
D O I
10.1016/j.envsoft.2019.03.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Forest landscape models (FLM) are widely used for simulating forest ecosystems. As FLMs have become more mechanistic, more input parameters are required, which increases model parameter uncertainty. To better understand the increased mechanistic detail provided by LANDIS-II/PnET-Succession, we studied the effects of parameter uncertainty on model outputs based on three different approaches. Global sensitivity analyses summarized the influence of each parameter, a local sensitivity analysis determined the magnitude of and degree of nonlinearity of variation in model outputs alongside variation in individual parameters, and a regression tree analysis identified hierarchical relationships among and interaction effects between parameters. Foliar nitrogen, maintenance respiration, and atmospheric carbon dioxide concentration were the most influential parameters in the global analysis. Knowing where parameter influence is concentrated will help model users interpret results from LANDIS-II/PnET-Succession to address ecological questions and should guide priorities for data acquisition.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [41] A mixture of local and global sensitivity analysis based on the derivative of failure probability
    Lü, Z.-Z. (zhenzhoulu@nwpu.edu.cn), 1600, Tsinghua University (30):
  • [42] Line sampling-based local and global reliability sensitivity analysis
    Zhang, Xiaobo
    Lu, Zhenzhou
    Yun, Wanying
    Feng, Kaixuan
    Wang, Yanping
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 61 (01) : 267 - 281
  • [43] Efficient global and local force calculations based on continuum sensitivity analysis
    Kim, Dong-Hun
    Lowther, David A.
    Sykulski, Jan K.
    IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (04) : 1177 - 1180
  • [44] Line sampling-based local and global reliability sensitivity analysis
    Xiaobo Zhang
    Zhenzhou Lu
    Wanying Yun
    Kaixuan Feng
    Yanping Wang
    Structural and Multidisciplinary Optimization, 2020, 61 : 267 - 281
  • [45] Evaluation of parameter sensitivity of a rainfall-runoff model over a global catchment set
    Santos, Leonard
    Andersson, Jafet C. M.
    Arheimer, Berit
    HYDROLOGICAL SCIENCES JOURNAL, 2022, 67 (03) : 342 - 357
  • [46] Sarsa Learning Based Route Guidance System with Global and Local Parameter Strategy
    Wen, Feng
    Wang, Xingqiao
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2015, E98A (12): : 2686 - 2693
  • [47] Modelling forest management within a global vegetation model Part 1: Model structure and general behaviour
    Bellassen, V.
    Le Maire, G.
    Dhote, J. F.
    Ciais, P.
    Viovy, N.
    ECOLOGICAL MODELLING, 2010, 221 (20) : 2458 - 2474
  • [48] Global fitting without a global model: Regularization based on the continuity of the evolution of parameter distributions
    Giurleo, Jason T.
    Talaga, David S.
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (11):
  • [49] Fast global motion estimation based on 3-parameter global motion model
    National Laboratory of Pattern Recognition, Institute o f Automation, Chinese Academy of Sciences, Beijing 100080, China
    Jisuanji Xuebao, 2006, 6 (920-927):
  • [50] Effects of parameter and data uncertainty on long-term projections in a model of the global forest sector
    Buongiorno, Joseph
    Johnston, Craig
    FOREST POLICY AND ECONOMICS, 2018, 93 : 10 - 17