Local and global parameter sensitivity within an ecophysiologically based forest landscape model

被引:24
|
作者
McKenzie, Patrick F. [1 ,2 ]
Duveneck, Matthew J. [1 ,3 ]
Morreale, Luca L. [1 ,4 ]
Thompson, Jonathan R. [1 ]
机构
[1] Harvard Univ, Harvard Forest, Petersham, MA 01360 USA
[2] Columbia Univ, Dept Ecol Evolut & Environm Biol, New York, NY 10027 USA
[3] New England Conservatory, Dept Liberal Arts, Boston, MA 02115 USA
[4] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
Uncertainty; LANDIS-II; PnET; Forest landscape model; Fourier amplitude sensitivity test; Regression tree; COUPLED REACTION SYSTEMS; CLIMATE-CHANGE; LAND-USE; RATE COEFFICIENTS; REGRESSION TREES; SIMULATION-MODEL; FUTURE FOREST; WATER YIELD; UNCERTAINTIES; NITROGEN;
D O I
10.1016/j.envsoft.2019.03.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Forest landscape models (FLM) are widely used for simulating forest ecosystems. As FLMs have become more mechanistic, more input parameters are required, which increases model parameter uncertainty. To better understand the increased mechanistic detail provided by LANDIS-II/PnET-Succession, we studied the effects of parameter uncertainty on model outputs based on three different approaches. Global sensitivity analyses summarized the influence of each parameter, a local sensitivity analysis determined the magnitude of and degree of nonlinearity of variation in model outputs alongside variation in individual parameters, and a regression tree analysis identified hierarchical relationships among and interaction effects between parameters. Foliar nitrogen, maintenance respiration, and atmospheric carbon dioxide concentration were the most influential parameters in the global analysis. Knowing where parameter influence is concentrated will help model users interpret results from LANDIS-II/PnET-Succession to address ecological questions and should guide priorities for data acquisition.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [31] Temporal Sensitivity Analysis of the MONICA Model: Application of Two Global Approaches to Analyze the Dynamics of Parameter Sensitivity
    Specka, Xenia
    Nendel, Claas
    Wieland, Ralf
    AGRICULTURE-BASEL, 2019, 9 (02):
  • [32] Tipping points of a complex network biomass model: Local and global parameter variations
    Moghadam, Nastaran Navid
    Ramamoorthy, Ramesh
    Nazarimehr, Fahimeh
    Rajagopal, Karthikeyan
    Jafari, Sajad
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 592
  • [33] Parameter sensitivity analysis for a biochemically-based photosynthesis model
    Tuo Han
    Qi Feng
    TengFei Yu
    Research in Cold and Arid Regions, 2023, 15 (02) : 73 - 84
  • [34] Parameter sensitivity analysis for a biochemically-based photosynthesis model
    Han, Tuo
    Feng, Qi
    Yu, Tengfei
    RESEARCH IN COLD AND ARID REGIONS, 2023, 15 (02) : 73 - 84
  • [35] Lumped parameter sensitivity analysis of a distributed hydrological model within tropical and temperate catchments
    Cuo, Lan
    Giambelluca, Thomas W.
    Ziegler, Alan D.
    HYDROLOGICAL PROCESSES, 2011, 25 (15) : 2405 - 2421
  • [36] A Local Initiative to Achieve Global Forest and Landscape Restoration Challenge-Lessons Learned from a Community-Based Forest Restoration Project in Biliran Province, Philippines
    Gregorio, Nestor
    Herbohn, John
    Tripoli, Rogelio
    Pasa, Arturo
    FORESTS, 2020, 11 (04):
  • [37] Application of Random Forest Method Based on Sensitivity Parameter Analysis in Height Inversion in Changbai Mountain Forest Area
    Wang, Xiaoyan
    Wang, Ruirui
    Wei, Shi
    Xu, Shicheng
    FORESTS, 2024, 15 (07):
  • [38] Sensitivity-Based Parameter Calibration and Model Validation Under Model Error
    Qiu, Na
    Park, Chanyoung
    Gao, Yunkai
    Fang, Jianguang
    Sun, Guangyong
    Kim, Nam H.
    JOURNAL OF MECHANICAL DESIGN, 2018, 140 (01)
  • [39] A global sensitivity analysis method based on ANOVA with convex set model and its state-dependent parameter solution
    Guo, Qing
    Liu, Yongshou
    Chen, Xiangyu
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2019, 233 (11) : 4039 - 4051
  • [40] Variance-based sensitivity analysis of a forest growth model
    Song, Xiaodong
    Bryan, Brett A.
    Paul, Keryn I.
    Zhao, Gang
    ECOLOGICAL MODELLING, 2012, 247 : 135 - 143