Local and global parameter sensitivity within an ecophysiologically based forest landscape model

被引:24
|
作者
McKenzie, Patrick F. [1 ,2 ]
Duveneck, Matthew J. [1 ,3 ]
Morreale, Luca L. [1 ,4 ]
Thompson, Jonathan R. [1 ]
机构
[1] Harvard Univ, Harvard Forest, Petersham, MA 01360 USA
[2] Columbia Univ, Dept Ecol Evolut & Environm Biol, New York, NY 10027 USA
[3] New England Conservatory, Dept Liberal Arts, Boston, MA 02115 USA
[4] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
Uncertainty; LANDIS-II; PnET; Forest landscape model; Fourier amplitude sensitivity test; Regression tree; COUPLED REACTION SYSTEMS; CLIMATE-CHANGE; LAND-USE; RATE COEFFICIENTS; REGRESSION TREES; SIMULATION-MODEL; FUTURE FOREST; WATER YIELD; UNCERTAINTIES; NITROGEN;
D O I
10.1016/j.envsoft.2019.03.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Forest landscape models (FLM) are widely used for simulating forest ecosystems. As FLMs have become more mechanistic, more input parameters are required, which increases model parameter uncertainty. To better understand the increased mechanistic detail provided by LANDIS-II/PnET-Succession, we studied the effects of parameter uncertainty on model outputs based on three different approaches. Global sensitivity analyses summarized the influence of each parameter, a local sensitivity analysis determined the magnitude of and degree of nonlinearity of variation in model outputs alongside variation in individual parameters, and a regression tree analysis identified hierarchical relationships among and interaction effects between parameters. Foliar nitrogen, maintenance respiration, and atmospheric carbon dioxide concentration were the most influential parameters in the global analysis. Knowing where parameter influence is concentrated will help model users interpret results from LANDIS-II/PnET-Succession to address ecological questions and should guide priorities for data acquisition.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [21] Contextualizing local landscape initiatives in global change: a scenario study for the high forest zone, Ghana
    Wolff, Sarah
    Meijer, Johan
    Schulp, Catharina J. E.
    Verburg, Peter H.
    REGIONAL ENVIRONMENTAL CHANGE, 2020, 20 (04)
  • [22] Contextualizing local landscape initiatives in global change: a scenario study for the high forest zone, Ghana
    Sarah Wolff
    Johan Meijer
    Catharina J. E. Schulp
    Peter H. Verburg
    Regional Environmental Change, 2020, 20
  • [23] Sensitivity analysis of geometric parameter errors for industrial robots based on random forest
    Lv, Pin
    Shi, Weihao
    Wang, Yubin
    Li, Ruiyan
    Chen, Dongdong
    2023 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS, AIM, 2023, : 1135 - 1140
  • [24] Global sensitivity analysis of a model related to memory formation in synapses: Model reduction based on epistemic parameter uncertainties and related issues
    Kulasiri, Don
    Liang, Jingyi
    He, Yao
    Samarasinghe, Sandhya
    JOURNAL OF THEORETICAL BIOLOGY, 2017, 419 : 116 - 136
  • [25] Comparative Assessment of Two Global Sensitivity Approaches Considering Model and Parameter Uncertainty
    Dai, Heng
    Liu, Yujiao
    Guadagnini, Alberto
    Yuan, Songhu
    Yang, Jing
    Ye, Ming
    WATER RESOURCES RESEARCH, 2024, 60 (02)
  • [26] Parameter dependence of pore formation in silicon within a model of local current bursts
    Carstensen, J
    Christophersen, M
    Hasse, G
    Föll, H
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2000, 182 (01): : 63 - 69
  • [27] Reservoir Parameter Prediction Based on the Neural Random Forest Model
    Wang, Mingchuan
    Feng, Dongjun
    Li, Donghui
    Wang, Jiwei
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [28] Parameter sensitivity and uncertainty of the forest carbon flux model FORUG: a Monte Carlo analysis
    Verbeeck, H
    Samson, R
    Verdonck, F
    Lemeur, R
    TREE PHYSIOLOGY, 2006, 26 (06) : 807 - 817
  • [29] Global and local sensitivity analysis of the Emission Dispersion Model input parameters
    Chettouh, Samia
    WORLD JOURNAL OF SCIENCE TECHNOLOGY AND SUSTAINABLE DEVELOPMENT, 2021, 18 (04): : 513 - 532
  • [30] Global Sensitivity Analysis of a Dam Breaching Model: To Which Extent Is Parameter Sensitivity Case-Dependent?
    Schmitz, V.
    Arnst, M.
    Abderrezzak, K. El Kadi
    Pirotton, M.
    Erpicum, S.
    Archambeau, P.
    Dewals, B.
    WATER RESOURCES RESEARCH, 2023, 59 (06)