Local and global parameter sensitivity within an ecophysiologically based forest landscape model

被引:24
|
作者
McKenzie, Patrick F. [1 ,2 ]
Duveneck, Matthew J. [1 ,3 ]
Morreale, Luca L. [1 ,4 ]
Thompson, Jonathan R. [1 ]
机构
[1] Harvard Univ, Harvard Forest, Petersham, MA 01360 USA
[2] Columbia Univ, Dept Ecol Evolut & Environm Biol, New York, NY 10027 USA
[3] New England Conservatory, Dept Liberal Arts, Boston, MA 02115 USA
[4] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
Uncertainty; LANDIS-II; PnET; Forest landscape model; Fourier amplitude sensitivity test; Regression tree; COUPLED REACTION SYSTEMS; CLIMATE-CHANGE; LAND-USE; RATE COEFFICIENTS; REGRESSION TREES; SIMULATION-MODEL; FUTURE FOREST; WATER YIELD; UNCERTAINTIES; NITROGEN;
D O I
10.1016/j.envsoft.2019.03.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Forest landscape models (FLM) are widely used for simulating forest ecosystems. As FLMs have become more mechanistic, more input parameters are required, which increases model parameter uncertainty. To better understand the increased mechanistic detail provided by LANDIS-II/PnET-Succession, we studied the effects of parameter uncertainty on model outputs based on three different approaches. Global sensitivity analyses summarized the influence of each parameter, a local sensitivity analysis determined the magnitude of and degree of nonlinearity of variation in model outputs alongside variation in individual parameters, and a regression tree analysis identified hierarchical relationships among and interaction effects between parameters. Foliar nitrogen, maintenance respiration, and atmospheric carbon dioxide concentration were the most influential parameters in the global analysis. Knowing where parameter influence is concentrated will help model users interpret results from LANDIS-II/PnET-Succession to address ecological questions and should guide priorities for data acquisition.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] Global sensitivity analysis of parameter uncertainty in landscape evolution models
    Skinner, Christopher J.
    Coulthard, Tom J.
    Schwanghart, Wolfgang
    Van De Wiel, Marco J.
    Hancock, Greg
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2018, 11 (12) : 4873 - 4888
  • [2] The Aripaeno's landscape:: Local control within global reality
    Pérez, BE
    IDENTITIES-GLOBAL STUDIES IN CULTURE AND POWER, 2002, 9 (04): : 519 - 544
  • [3] Local and global sensitivity analysis for a reactor design with parameter uncertainty
    Haaker, MPR
    Verheijen, PJT
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2004, 82 (A5): : 591 - 598
  • [4] Parameter Estimation for Nonlinear Biological System Model Based on Global Sensitivity Analysis
    Jia, Jianfang
    2009 3RD INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1-11, 2009, : 279 - 282
  • [5] Forest Landscape Restoration and Local Stakeholders: A Global Bibliometric Mapping Analysis
    Fernandes, Amanda Augusta
    Adams, Cristina
    de Araujo, Luciana Gomes
    Romanelli, Joao Paulo
    Santos, Joao Paulo Bispo
    Rodrigues, Ricardo Ribeiro
    SUSTAINABILITY, 2022, 14 (23)
  • [6] A Global Sensitivity Analysis of Parameter Uncertainty in the CLASSIC Model
    Deepak, Raj S. N.
    Seiler, Christian
    Monahan, Adam H.
    ATMOSPHERE-OCEAN, 2024, 62 (05) : 347 - 359
  • [7] Parameter selection for model updating with global sensitivity analysis
    Yuan, Zhaoxu
    Liang, Peng
    Silva, Tiago
    Yu, Kaiping
    Mottershead, John E.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 115 : 483 - 496
  • [8] Global sensitivity based estimability analysis for the parameter identification of Pitzer's thermodynamic model
    Bouchkira, Ilias
    Latifi, Abderrazak M.
    Khamar, Lhachmi
    Benjelloun, Saad
    Reliability Engineering and System Safety, 2021, 207
  • [9] Global sensitivity based estimability analysis for the parameter identification of Pitzer's thermodynamic model
    Bouchkira, Ilias
    Latifi, Abderrazak M.
    Khamar, Lhachmi
    Benjelloun, Saad
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 207
  • [10] Global derivative based sensitivity method for parameter estimation
    Sulieman, H.
    Kucuk, I.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (07): : 1556 - 1573