Functoriality of Cuntz-Pimsner correspondence maps

被引:10
作者
Kaliszewski, S. [1 ]
Quigg, John [1 ]
Robertson, David [2 ]
机构
[1] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
[2] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia
关键词
Hilbert module; C*-correspondence; Cuntz-Pimsner algebra; Action; Coaction; CROSSED-PRODUCTS; SKEW PRODUCTS; ALGEBRAS; COACTIONS;
D O I
10.1016/j.jmaa.2013.02.069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the passage from a C*-correspondence to its Cuntz-Pimsner C*-algebra gives a functor on a category of C*-correspondences with appropriately defined morphisms. Applications involving topological graph C*-algebras are discussed, and an application to crossed-product correspondences is presented in detail. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 17 条
[1]  
[Anonymous], MEM AM MATH SOC
[2]  
Baaj S., 1989, K-Theory, V2, P683
[3]   Group actions on topological graphs [J].
Deaconu, Valentin ;
Kumjian, Alex ;
Quigg, John .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 :1527-1566
[4]   Naturality and induced representations [J].
Echterhoff, S ;
Kaliszewski, S ;
Quigg, J ;
Raeburn, I .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2000, 61 (03) :415-438
[5]   Crossed products of C*-correspondences by amenable group actions [J].
Hao, Gai ;
Ng, Chi-Keung .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (02) :702-707
[6]   Full and reduced coactions of locally compact groups on C*-algebras [J].
Huef, Astrid An ;
Quigg, John ;
Raeburn, Iain ;
Williams, Dana P. .
EXPOSITIONES MATHEMATICAE, 2011, 29 (01) :3-23
[7]   Ideal structure and simplicity of the C*-algebras generated by Hilbert bimodules [J].
Kajiwara, T ;
Pinzari, C ;
Watatani, Y .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 159 (02) :295-322
[8]   Coactions and Skew Products of Topological Graphs [J].
Kaliszewski, S. ;
Quigg, John .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2013, 75 (02) :187-196
[9]  
Kaliszewski S, 2001, J OPERAT THEOR, V46, P411
[10]   EQUIVARIANT KK-THEORY AND THE NOVIKOV-CONJECTURE [J].
KASPAROV, GG .
INVENTIONES MATHEMATICAE, 1988, 91 (01) :147-201