Fourier amplitude distribution and intermittency in mechanically generated surface gravity waves

被引:14
作者
Fadaeiazar, Elmira [1 ]
Leontini, Justin [1 ]
Onorato, Miguel [2 ,3 ]
Waseda, Takuji [4 ]
Alberello, Alberto [2 ,5 ]
Toffoli, Alessandro [6 ]
机构
[1] Swinburne Univ Technol, Dept Mech & Prod Design Engn, Hawthorn, Vic 3122, Australia
[2] Univ Torino, Dipartimento Fis, I-10125 Turin, Italy
[3] INFN, I-10125 Turin, Italy
[4] Univ Tokyo, Grad Sch Frontier Sci, Dept Ocean Technol Policy & Environm, Tokyo, Japan
[5] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[6] Univ Melbourne, Dept Infrastruct Engn, Parkville, Vic 3010, Australia
关键词
DIRECTIONAL SPECTRUM; TURBULENCE; STATISTICS; EVOLUTION;
D O I
10.1103/PhysRevE.102.013106
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We examine and discuss the spatial evolution of the statistical properties of mechanically generated surface gravity wave fields, initialized with unidirectional spectral energy distributions, uniformly distributed phases, and Rayleigh distributed amplitudes. We demonstrate that nonlinear interactions produce an energy cascade towards high frequency modes with a directional spread and trigger localized intermittent bursts. By analyzing the probability density function of Fourier mode amplitudes in the high frequency range of the wave energy spectrum, we show that a heavy-tailed distribution emerges with distance from the wave generator as a result of these intermittent bursts, departing from the originally imposed Rayleigh distribution, even under relatively weak nonlinear conditions.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Observation of turbulence and intermittency in wave-induced oscillatory flows
    Alberello, Alberto
    Onorato, Miguel
    Frascoli, Federico
    Toffoli, Alessandro
    [J]. WAVE MOTION, 2019, 84 : 81 - 89
  • [2] Hydrodynamic Supercontinuum
    Chabchoub, A.
    Hoffmann, N.
    Onorato, M.
    Genty, G.
    Dudley, J. M.
    Akhmediev, N.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (05)
  • [3] Anomalous probability of large amplitudes in wave turbulence
    Choi, Y
    Lvov, YV
    Nazarenko, S
    Pokorni, B
    [J]. PHYSICS LETTERS A, 2005, 339 (3-5) : 361 - 369
  • [4] Dimensional analysis and weak turbulence
    Connaughton, C
    Nazarenko, S
    Newell, AC
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2003, 184 (1-4) : 86 - 97
  • [5] Role of the basin boundary conditions in gravity wave turbulence
    Deike, L.
    Miquel, B.
    Gutierrez, P.
    Jamin, T.
    Samin, B.
    Berhanu, M.
    Falcon, E.
    Bonnefoy, F.
    [J]. JOURNAL OF FLUID MECHANICS, 2015, 781 : 196 - 225
  • [6] Energy flux measurement from the dissipated energy in capillary wave turbulence
    Deike, Luc
    Berhanu, Michael
    Falcon, Eric
    [J]. PHYSICAL REVIEW E, 2014, 89 (02)
  • [7] Gravity wave turbulence in a laboratory flume
    Denissenko, Petr
    Lukaschuk, Sergei
    Nazarenko, Sergey
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (01)
  • [8] Donelan MA, 1996, J PHYS OCEANOGR, V26, P1901, DOI 10.1175/1520-0485(1996)026<1901:NAOTDP>2.0.CO
  • [9] 2
  • [10] IS FREE-SURFACE HYDRODYNAMICS AN INTEGRABLE SYSTEM
    DYACHENKO, AI
    ZAKHAROV, VE
    [J]. PHYSICS LETTERS A, 1994, 190 (02) : 144 - 148