The formation mechanism of Li4Ti5O12-y solid solutions prepared by carbothermal reduction and the effect of Ti3+ on electrochemical performance

被引:21
作者
Yang, Guijun [1 ]
Park, Soo-Jin [1 ]
机构
[1] Inha Univ, Dept Chem, 100 Inharo, Incheon, South Korea
基金
新加坡国家研究基金会;
关键词
CARBON-COATED LI4TI5O12; ANODE MATERIAL; SPINEL LI4TI5O12; HYDROTHERMAL SYNTHESIS; LITHIUM STORAGE; STATE SYNTHESIS; RATE CAPABILITY; AB-INITIO; 2-PHASE; CHALLENGES;
D O I
10.1038/s41598-019-41206-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Samples of Li4Ti5O12-y solid solutions are synthesized by one-step solid-state carbothermal reduction reaction using Li2CO3, anatase, and carbon black under a nitrogen atmosphere. The underlying formation mechanism that leads to Li4Ti5O12-y solid solutions is proposed. The formation mechanism of the Li4Ti5O12-y solid solution is investigated by in situ variable temperature X-Ray diffraction (VT-XRD) and thermogravimetric analysis/differential scanning calorimetry (TGA-DSC). First, some Ti4+ centers are converted to Ti3+ (TiO2-TiO2-x) because of the presence of carbon black. Secondly, Li2CO3 reacts with TiO2-x (anatase) to form Li2TiO3. Thirdly, Li2TiO3 reacts with TiO2-x to form the Li4Ti5O12-y solid solution, while anatase starts to transform into rutile at the same time. Rutile reacts with Li2TiO3 to form Li4Ti5O12-y at higher temperatures. The presence of Ti3+ not only improves the electrical conductivity but also improves the ionic conductivity. As a result, the as-prepared material exhibits good rate capability and cycling stability with 99.3% capacity retention after 200 cycles.
引用
收藏
页数:9
相关论文
共 38 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   All oxide solid-state lithium-ion cells [J].
Brousse, T ;
Fragnaud, P ;
Marchand, R ;
Schleich, DM ;
Bohnke, O ;
West, K .
JOURNAL OF POWER SOURCES, 1997, 68 (02) :412-415
[3]   Defective mesoporous Li4Ti5O12-y: An advanced anode material with anomalous capacity and cycling stability at a high rate of 20 C [J].
Chen, Xiaomei ;
Guan, Xiangfeng ;
Li, Liping ;
Li, Guangshe .
JOURNAL OF POWER SOURCES, 2012, 210 :297-302
[4]   STRUCTURE AND ELECTROCHEMISTRY OF THE SPINEL OXIDES LITI2O4 AND LI4/3TI5/3O4 [J].
COLBOW, KM ;
DAHN, JR ;
HAERING, RR .
JOURNAL OF POWER SOURCES, 1989, 26 (3-4) :397-402
[5]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[6]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[7]   Ordered Large-Pore Mesoporous Li4Ti5O12 Spinel Thin Film Electrodes with Nanocrystalline Framework for High Rate Rechargeable Lithium Batteries: Relationships among Charge Storage, Electrical Conductivity, and Nanoscale Structure [J].
Haetge, Jan ;
Hartmann, Pascal ;
Brezesinski, Kirstin ;
Janek, Juergen ;
Brezesinski, Torsten .
CHEMISTRY OF MATERIALS, 2011, 23 (19) :4384-4393
[8]   INHOMOGENEOUS ELECTRON-GAS [J].
RAJAGOPAL, AK ;
CALLAWAY, J .
PHYSICAL REVIEW B, 1973, 7 (05) :1912-1919
[9]   Micron-sized, carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries [J].
Jung, Hun-Gi ;
Kim, Junghoon ;
Scrosati, Bruno ;
Sun, Yang-Kook .
JOURNAL OF POWER SOURCES, 2011, 196 (18) :7763-7766
[10]   Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries [J].
Jung, Hun-Gi ;
Myung, Seung-Taek ;
Yoon, Chong Seung ;
Son, Seoung-Bum ;
Oh, Kyu Hwan ;
Amine, Khalil ;
Scrosati, Bruno ;
Sun, Yang-Kook .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (04) :1345-1351