ACAT: A Fast and Powerful p Value Combination Method for Rare-Variant Analysis in Sequencing Studies

被引:232
作者
Liu, Yaowu [1 ]
Chen, Sixing [1 ]
Li, Zilin [1 ]
Morrison, Alanna C. [2 ]
Boerwinkle, Eric [2 ,3 ]
Lin, Xihong [1 ]
机构
[1] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[2] Univ Texas Hlth Sci Ctr Houston, Sch Publ Hlth, Human Genet Ctr, Dept Epidemiol Human Genet & Environm Sci, Houston, TX 77030 USA
[3] Baylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USA
关键词
MISSING HERITABILITY; HIGHER CRITICISM; ASSOCIATION; GENOME; TESTS; LIPOPROTEIN;
D O I
10.1016/j.ajhg.2019.01.002
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Set-based analysis that jointly tests the association of variants in a group has emerged as a popular tool for analyzing rare and low-frequency variants in sequencing studies. The existing set-based tests can suffer significant power loss when only a small proportion of variants are causal, and their powers can be sensitive to the number, effect sizes, and effect directions of the causal variants and the choices of weights. Here we propose an aggregated Cauchy association test (ACAT), a general, powerful, and computationally efficient p value combination method for boosting power in sequencing studies. First, by combining variant-level p values, we use ACAT to construct a set-based test (ACAT-V) that is particularly powerful in the presence of only a small number of causal variants in a variant set. Second, by combining different variant-set-level p values, we use ACAT to construct an omnibus test (ACAT-O) that combines the strength of multiple complimentary set-based tests, including the burden test, sequence kernel association test (SKAT), and ACAT-V. Through analysis of extensively simulated data and the whole-genome sequencing data from the Atherosclerosis Risk in Communities (ARIC) study, we demonstrate that ACAT-V complements the SKAT and the burden test, and that ACAT-O has a substantially more robust and higher power than those of the alternative tests.
引用
收藏
页码:410 / 421
页数:12
相关论文
共 30 条
[1]   The Generalized Higher Criticism for Testing SNP-Set Effects in Genetic Association Studies [J].
Barnett, Ian ;
Mukherjee, Rajarshi ;
Lin, Xihong .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (517) :64-76
[2]  
Blom G., 1958, STAT ESTIMATES TRANS
[3]   Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models [J].
Chen, Han ;
Wang, Chaolong ;
Conomos, Matthew P. ;
Stilp, Adrienne M. ;
Li, Zilin ;
Sofer, Tamar ;
Szpiro, Adam A. ;
Chen, Wei ;
Brehm, John M. ;
Celedon, Juan C. ;
Redline, Susan ;
Papanicolaou, George J. ;
Thornton, Timothy A. ;
Laurie, Cathy C. ;
Rice, Kenneth ;
Lin, Xihong .
AMERICAN JOURNAL OF HUMAN GENETICS, 2016, 98 (04) :653-666
[4]   An Exponential Combination Procedure for Set-Based Association Tests in Sequencing Studies [J].
Chen, Lin S. ;
Hsu, Li ;
Gamazon, Eric R. ;
Cox, Nancy J. ;
Nicolae, Dan L. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2012, 91 (06) :977-986
[5]   Genetic Variants Associated with Lp(a) Lipoprotein Level and Coronary Disease [J].
Clarke, Robert ;
Peden, John F. ;
Hopewell, Jemma C. ;
Kyriakou, Theodosios ;
Goel, Anuj ;
Heath, Simon C. ;
Parish, Sarah ;
Barlera, Simona ;
Franzosi, Maria Grazia ;
Rust, Stephan ;
Bennett, Derrick ;
Silveira, Angela ;
Malarstig, Anders ;
Green, Fiona R. ;
Lathrop, Mark ;
Gigante, Bruna ;
Leander, Karin ;
de Faire, Ulf ;
Seedorf, Udo ;
Hamsten, Anders ;
Collins, Rory ;
Watkins, Hugh ;
Farrall, Martin .
NEW ENGLAND JOURNAL OF MEDICINE, 2009, 361 (26) :2518-2528
[6]   Robust and Powerful Tests for Rare Variants Using Fisher's Method to Combine Evidence of Association From Two or More Complementary Tests [J].
Derkach, Andriy ;
Lawless, Jerry F. ;
Sun, Lei .
GENETIC EPIDEMIOLOGY, 2013, 37 (01) :110-121
[7]   A Fast and Accurate Algorithm to Test for Binary Phenotypes and Its Application to PheWAS [J].
Dey, Rounak ;
Schmidt, Ellen M. ;
Abecasis, Goncalo R. ;
Lee, Seunggeun .
AMERICAN JOURNAL OF HUMAN GENETICS, 2017, 101 (01) :37-49
[8]   Higher criticism for detecting sparse heterogeneous mixtures [J].
Donoho, D ;
Jin, JS .
ANNALS OF STATISTICS, 2004, 32 (03) :962-994
[9]   VIEWPOINT Missing heritability and strategies for finding the underlying causes of complex disease [J].
Eichler, Evan E. ;
Flint, Jonathan ;
Gibson, Greg ;
Kong, Augustine ;
Leal, Suzanne M. ;
Moore, Jason H. ;
Nadeau, Joseph H. .
NATURE REVIEWS GENETICS, 2010, 11 (06) :446-450
[10]  
Fisher R.A., 1992, STAT METHODS RES WOR, P66, DOI [10.1007/978-1-4612-4380-96, DOI 10.1007/978-1-4612-4380-96, 10.1007/978-1-4612-4380-9_6, DOI 10.1007/978-1-4612-4380-9_6]