Global existence and asymptotic behavior of solutions to a semilinear parabolic equation on Carnot groups

被引:1
作者
Yuan, Zixia [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
来源
BOUNDARY VALUE PROBLEMS | 2015年
关键词
Carnot group; existence; asymptotic behavior; GEOMETRIC INEQUALITY; CRITICAL EXPONENT; STABLE-SOLUTIONS; OPERATORS; CONTINUITY;
D O I
10.1186/s13661-015-0383-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the semilinear parabolic equation Sigma(m)(ij=1) a(ij)X(j)X(j)u - partial derivative(left perpendicular)u + Vu(p) = 0 with a general class of potentials V = V(xi, t), where A = {a(ij)}(i,j) is a positive definite symmetric matrix and the X-j's denotes a system of left-invariant vector fields on a Carnot group G. Based on a fixed point argument and by establishing some new estimates involving the heat kernel, we study the existence and large-time behavior of global positive solutions to the preceding equation.
引用
收藏
页数:18
相关论文
共 18 条
[1]  
Bonfiglioli A, 2007, SPRINGER MONOGR MATH, P3
[2]  
Bonfiglioli A., 2002, Adv. Differ. Equ, V7, P1153
[3]   Harnack inequality for non-divergence form operators on stratified groups [J].
Bonfiglioli, Andrea ;
Uguzzoni, Francesco .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (06) :2463-2481
[4]  
Bramanti M, 2010, NONDIVERGENCE EQUATI
[5]   Heat kernels for non-divergence operators of Hormander type [J].
Bramanti, Marco ;
Brandolini, Luca ;
Lanconelli, Ermanno ;
Uguzzoni, Francesco .
COMPTES RENDUS MATHEMATIQUE, 2006, 343 (07) :463-466
[6]   A cortical based model of perceptual completion in the roto-translation space [J].
Citti, G ;
Sarti, A .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2006, 24 (03) :307-326
[7]   A geometric inequality in the Heisenberg group and its applications to stable solutions of semilinear problems [J].
Ferrari, Fausto ;
Valdinoci, Enrico .
MATHEMATISCHE ANNALEN, 2009, 343 (02) :351-370
[8]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[9]  
Huang QB, 2006, AM J MATH, V128, P453, DOI 10.1353/ajm.2006.0013
[10]   THE VALUE OF THE CRITICAL EXPONENT FOR REACTION-DIFFUSION EQUATIONS IN CONES [J].
LEVINE, HA ;
MEIER, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 109 (01) :73-80