Genome-Wide Identification of Potential mRNAs in Drought Response in Wheat (Triticum aestivum L.)

被引:2
|
作者
Aqeel, Muhammad [1 ]
Ajmal, Wajya [1 ]
Mujahid, Quratulain [2 ]
Murtaza, Maryam [1 ]
Almuqbil, Mansour [3 ]
Ghazanfar, Shakira [1 ]
Uzair, Muhammad [1 ,4 ]
Wadood, Ayesha [5 ]
Asdaq, Syed Mohammed Basheeruddin [6 ]
Abid, Rameesha [1 ]
Ali, Ghulam Muhammad [7 ]
Khan, Muhammad Ramzan [1 ]
机构
[1] Natl Agr Res Ctr, Natl Inst Genom & Adv Biotechnol, Pk Rd, Islamabad 45500, Pakistan
[2] Lahore Coll Women Univ Lahore, Dept Bot, Lahore 54000, Pakistan
[3] King Saud Univ, Coll Pharm, Dept Clin Pharm, Riyadh 11451, Saudi Arabia
[4] Chinese Acad Agr Sci, Inst Crop Sci, Natl Key Facil Crop Gene Resources & Genet Improv, Beijing 100081, Peoples R China
[5] Quaid I Azam Univ, Dept Biochem, Islamabad 45320, Pakistan
[6] AlMaarefa Univ, Coll Pharm, Dept Pharm Practice, Riyadh 13713, Saudi Arabia
[7] Pakistan Agr Res Council, Islamabad 44000, Pakistan
关键词
drought; bread wheat; meta data; RNA seq; genomics; TRANSCRIPTION FACTORS; TOLERANCE; ACCLIMATION; PROTEINS; RICE; COLD; SALT;
D O I
10.3390/genes13101906
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Plant cell metabolism inevitably forms an important drought-responsive mechanism, which halts crop productivity. Globally, more than 30% of the total harvested area was affected by dehydration. RNA-seq technology has enabled biologists to identify stress-responsive genes in relatively quick times. However, one shortcoming of this technology is the inconsistent data generation compared to other parts of the world. So, we have tried, here, to generate a consensus by analyzing meta-transcriptomic data available in the public microarray database GEO NCBI. In this way, the aim was set, here, to identify stress genes commonly identified as differentially expressed (p < 0.05) then followed by downstream analyses. The search term "Drought in wheat" resulted in 233 microarray experiments from the GEO NCBI database. After discarding empty datasets containing no expression data, the large-scale meta-transcriptome analytics and one sample proportional test were carried out (Bonferroni adjusted p < 0.05) to reveal a set of 11 drought-responsive genes on a global scale. The annotation of these genes revealed that the transcription factor activity of RNA polymerase II and sequence-specific DNA-binding mechanism had a significant role during the drought response in wheat. Similarly, the primary root differentiation zone annotations, controlled by TraesCS5A02G456300 and TraesCS7B02G243600 genes, were found as top-enriched terms (p < 0.05 and Q < 0.05). The resultant standard drought genes, glycosyltransferase; Arabidopsis thaliana KNOTTED-like; bHLH family protein; Probable helicase MAGATAMA 3; SBP family protein; Cytochrome c oxidase subunit 2; Trihelix family protein; Mic1 domain-containing protein; ERF family protein; HD-ZIP I protein; and ERF family protein, are important in terms of their worldwide proved link with stress. From a future perspective, this study could be important in a breeding program contributing to increased crop yield. Moreover, the wheat varieties could be identified as drought-resistant/sensitive based on the nature of gene expression levels.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Genome-Wide Identification and Expression Analysis of the HD-Zip Gene Family in Wheat (Triticum aestivum L.)
    Yue, Hong
    Shu, Duntao
    Wang, Meng
    Xing, Guangwei
    Zhan, Haoshuang
    Du, Xianghong
    Song, Weining
    Nie, Xiaojun
    GENES, 2018, 9 (02)
  • [42] The auxin response factor gene family in wheat (Triticum aestivum L.): Genome-wide identification, characterization and expression analyses in response to leaf rust
    Gidhi, Anupama
    Kumar, Manish
    Mukhopadhyay, Kunal
    SOUTH AFRICAN JOURNAL OF BOTANY, 2021, 140 : 312 - 325
  • [43] Genome-Wide Association Studies Reveal Genomic Regions Associated With the Response of Wheat (Triticum aestivum L.) to Mycorrhizae Under Drought Stress Conditions
    Lehnert, Heike
    Serfling, Albrecht
    Friedt, Wolfgang
    Ordon, Frank
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [44] Genome-wide identification of DCL, AGO, and RDR gene families in wheat (Triticum aestivum L.) and their expression analysis in response to heat stress
    Mishra, Shefali
    Sharma, Pradeep
    Singh, Rajender
    Ahlawat, Om Parkash
    Singh, Gyanendra
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2023, 29 (10) : 1525 - 1541
  • [45] Genome-wide identification of DCL, AGO, and RDR gene families in wheat (Triticum aestivum L.) and their expression analysis in response to heat stress
    Shefali Mishra
    Pradeep Sharma
    Rajender Singh
    Om Parkash Ahlawat
    Gyanendra Singh
    Physiology and Molecular Biology of Plants, 2023, 29 : 1525 - 1541
  • [46] Genome-wide association study for grain zinc concentration in bread wheat (Triticum aestivum L.)
    Ma, Jianhui
    Ye, Miaomiao
    Liu, Qianqian
    Yuan, Meng
    Zhang, Daijing
    Li, Chunxi
    Zeng, Qingdong
    Wu, Jianhui
    Han, Dejun
    Jiang, Lina
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [47] Genome-wide linkage mapping of Fusarium crown rot in common wheat (Triticum aestivum L.)
    Li, Faji
    Guo, Can
    Zhao, Qi
    Wen, Weie
    Zhai, Shengnan
    Cao, Xinyou
    Liu, Cheng
    Cheng, Dungong
    Guo, Jun
    Zi, Yan
    Liu, Aifeng
    Song, Jianmin
    Liu, Jianjun
    Liu, Jindong
    Li, Haosheng
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [48] Genome-wide association mapping of black point reaction in common wheat (Triticum aestivum L.)
    Liu, Jindong
    He, Zhonghu
    Rasheed, Awais
    Wen, Weie
    Yan, Jun
    Zhang, Pingzhi
    Wan, Yingxiu
    Zhang, Yong
    Xie, Chaojie
    Xia, Xianchun
    BMC PLANT BIOLOGY, 2017, 17
  • [49] Genome-Wide Association Mapping of Macronutrient Mineral Accumulation in Wheat (Triticum aestivum L.) Grain
    Aljabri, Maha
    El-Soda, Mohamed
    PLANTS-BASEL, 2024, 13 (24):
  • [50] Deciphering the genetic landscape of seedling drought stress tolerance in wheat (Triticum aestivum L.) through genome-wide association studies
    Gudi, Santosh
    Halladakeri, Priyanka
    Singh, Gurjeet
    Kumar, Pradeep
    Singh, Satinder
    Alwutayd, Khairiah Mubarak
    Abd El-Moneim, Diaa
    Sharma, Achla
    FRONTIERS IN PLANT SCIENCE, 2024, 15