Genome-Wide Identification of Potential mRNAs in Drought Response in Wheat (Triticum aestivum L.)

被引:2
|
作者
Aqeel, Muhammad [1 ]
Ajmal, Wajya [1 ]
Mujahid, Quratulain [2 ]
Murtaza, Maryam [1 ]
Almuqbil, Mansour [3 ]
Ghazanfar, Shakira [1 ]
Uzair, Muhammad [1 ,4 ]
Wadood, Ayesha [5 ]
Asdaq, Syed Mohammed Basheeruddin [6 ]
Abid, Rameesha [1 ]
Ali, Ghulam Muhammad [7 ]
Khan, Muhammad Ramzan [1 ]
机构
[1] Natl Agr Res Ctr, Natl Inst Genom & Adv Biotechnol, Pk Rd, Islamabad 45500, Pakistan
[2] Lahore Coll Women Univ Lahore, Dept Bot, Lahore 54000, Pakistan
[3] King Saud Univ, Coll Pharm, Dept Clin Pharm, Riyadh 11451, Saudi Arabia
[4] Chinese Acad Agr Sci, Inst Crop Sci, Natl Key Facil Crop Gene Resources & Genet Improv, Beijing 100081, Peoples R China
[5] Quaid I Azam Univ, Dept Biochem, Islamabad 45320, Pakistan
[6] AlMaarefa Univ, Coll Pharm, Dept Pharm Practice, Riyadh 13713, Saudi Arabia
[7] Pakistan Agr Res Council, Islamabad 44000, Pakistan
关键词
drought; bread wheat; meta data; RNA seq; genomics; TRANSCRIPTION FACTORS; TOLERANCE; ACCLIMATION; PROTEINS; RICE; COLD; SALT;
D O I
10.3390/genes13101906
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Plant cell metabolism inevitably forms an important drought-responsive mechanism, which halts crop productivity. Globally, more than 30% of the total harvested area was affected by dehydration. RNA-seq technology has enabled biologists to identify stress-responsive genes in relatively quick times. However, one shortcoming of this technology is the inconsistent data generation compared to other parts of the world. So, we have tried, here, to generate a consensus by analyzing meta-transcriptomic data available in the public microarray database GEO NCBI. In this way, the aim was set, here, to identify stress genes commonly identified as differentially expressed (p < 0.05) then followed by downstream analyses. The search term "Drought in wheat" resulted in 233 microarray experiments from the GEO NCBI database. After discarding empty datasets containing no expression data, the large-scale meta-transcriptome analytics and one sample proportional test were carried out (Bonferroni adjusted p < 0.05) to reveal a set of 11 drought-responsive genes on a global scale. The annotation of these genes revealed that the transcription factor activity of RNA polymerase II and sequence-specific DNA-binding mechanism had a significant role during the drought response in wheat. Similarly, the primary root differentiation zone annotations, controlled by TraesCS5A02G456300 and TraesCS7B02G243600 genes, were found as top-enriched terms (p < 0.05 and Q < 0.05). The resultant standard drought genes, glycosyltransferase; Arabidopsis thaliana KNOTTED-like; bHLH family protein; Probable helicase MAGATAMA 3; SBP family protein; Cytochrome c oxidase subunit 2; Trihelix family protein; Mic1 domain-containing protein; ERF family protein; HD-ZIP I protein; and ERF family protein, are important in terms of their worldwide proved link with stress. From a future perspective, this study could be important in a breeding program contributing to increased crop yield. Moreover, the wheat varieties could be identified as drought-resistant/sensitive based on the nature of gene expression levels.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Correction to: Genome-wide identification and analysis of WD40 proteins in wheat (Triticum aestivum L.)
    Rui Hu
    Jie Xiao
    Ting Gu
    Xiaofen Yu
    Yang Zhang
    Junli Chang
    Guangxiao Yang
    Guangyuan He
    BMC Genomics, 19
  • [22] Genome-Wide Identification and Expression Profiling of the ABF Transcription Factor Family in Wheat (Triticum aestivum L.)
    Yang, Fuhui
    Sun, Xuelian
    Wu, Gang
    He, Xiaoyan
    Liu, Wenxing
    Wang, Yongmei
    Sun, Qingyi
    Zhao, Yan
    Xu, Dengan
    Dai, Xuehuan
    Ma, Wujun
    Zeng, Jianbin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (07)
  • [23] Genome-Wide Identification and Analysis of GHMP Kinase Gene Superfamily in Bread Wheat (Triticum aestivum L.)
    Thakur, Neha
    Flowerika
    Singh, Pankaj K.
    Kaur, Karambir
    Tiwari, Siddharth
    PLANT MOLECULAR BIOLOGY REPORTER, 2021, 39 (02) : 455 - 470
  • [24] Genome-wide identification of Aux/IAA and ARF gene families in bread wheat (Triticum aestivum L.)
    Chanderkant Chaudhary
    Nikita Sharma
    Paramjit Khurana
    Protoplasma, 2023, 260 : 257 - 270
  • [25] Genome-wide identification and characterization of the TPS gene family in wheat (Triticum aestivum L.) and expression analysis in response to aphid damage
    Zhao, Lei
    Zhao, Xiaojing
    Francis, Frederic
    Liu, Yong
    ACTA PHYSIOLOGIAE PLANTARUM, 2021, 43 (04)
  • [26] Genome-wide identification and characterization of the TPS gene family in wheat (Triticum aestivum L.) and expression analysis in response to aphid damage
    Lei Zhao
    Xiaojing Zhao
    Frédéric Francis
    Yong Liu
    Acta Physiologiae Plantarum, 2021, 43
  • [27] Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.)
    K. Neumann
    B. Kobiljski
    S. Denčić
    R. K. Varshney
    A. Börner
    Molecular Breeding, 2011, 27 : 37 - 58
  • [28] Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.)
    Neumann, K.
    Kobiljski, B.
    Dencic, S.
    Varshney, R. K.
    Boerner, A.
    MOLECULAR BREEDING, 2011, 27 (01) : 37 - 58
  • [29] Genome-wide association study of drought tolerance in wheat (Triticum aestivum L.) identifies SNP markers and candidate genes
    Nouraei, Sina
    Mia, Md Sultan
    Liu, Hui
    Turner, Neil C.
    Yan, Guijun
    MOLECULAR GENETICS AND GENOMICS, 2024, 299 (01)
  • [30] Genome-wide association study of drought tolerance in wheat (Triticum aestivum L.) identifies SNP markers and candidate genes
    Sina Nouraei
    Md Sultan Mia
    Hui Liu
    Neil C. Turner
    Guijun Yan
    Molecular Genetics and Genomics, 2024, 299