Existence and uniqueness of the weak solution of initial-boundary-value problems for the time-space fractional diffusion equation

被引:0
作者
Wen, Yanhua [1 ]
Xi, Xuanxuan [1 ]
Wang, Jun [1 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230039, Anhui, Peoples R China
来源
2017 32ND YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC) | 2017年
基金
中国国家自然科学基金;
关键词
Initial-boundary-value problem; Time-space fractional diffusion equation; Caputo fractional derivative; Existence and uniqueness; Maximum principle; LAPLACE OPERATOR;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper aims to study the existence and uniqueness of the weak solution of initial-boundary-value problems for the time-space fractional diffusion equation over a bounded domain Omega x [0, T], Omega subset of R-n. We first establish the existence of the weak solution of the initial-boundary-value problem for the time-space fractional diffusion equation and the proof is based on the eigenfunction expansion. Then to prove the uniqueness of the weak solution, a maximum principle for the time-space fractional diffusion equation is presented using the properties of the time fractional derivative and the fractional Laplace operator.
引用
收藏
页码:1053 / 1058
页数:6
相关论文
共 19 条
  • [1] Blumenthal RM., 1959, Pac. J. Math, V9, P399
  • [2] Optimal existence and uniqueness theory for the fractional heat equation
    Bonforte, Matteo
    Sire, Yannick
    Luis Vazquez, Juan
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 153 : 142 - 168
  • [3] An extension problem related to the fractional Laplacian
    Caffarelli, Luis
    Silvestre, Luis
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) : 1245 - 1260
  • [4] A direct method of moving planes for the fractional Laplacian
    Chen, Wenxiong
    Li, Congming
    Li, Yan
    [J]. ADVANCES IN MATHEMATICS, 2017, 308 : 404 - 437
  • [5] Hitchhiker's guide to the fractional Sobolev spaces
    Di Nezza, Eleonora
    Palatucci, Giampiero
    Valdinoci, Enrico
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05): : 521 - 573
  • [6] Evans Lawrence C., 1997, EVANS PARTIAL DIFFER
  • [7] Fernandez-Real X., 2016, BOUNDARY REGULARITY, V110, P49
  • [8] Refined semiclassical asymptotics for fractional powers of the Laplace operator
    Frank, Rupert L.
    Geisinger, Leander
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 712 : 1 - 37
  • [9] Weak solutions of fractional differential equations in non cylindrical domains
    Kubica, A.
    Rybka, P.
    Ryszewska, K.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 36 : 154 - 182
  • [10] Eigenvalues of the fractional Laplace operator in the interval
    Kwasnicki, Mateusz
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (05) : 2379 - 2402