A Novel Semicoupled Projective Dictionary Pair Learning Method for PolSAR Image Classification

被引:13
作者
Chen, Yanqiao [1 ,2 ]
Jiao, Licheng [1 ,2 ]
Li, Yangyang [1 ,2 ]
Li, Lingling [1 ,2 ]
Zhang, Dan [1 ,2 ]
Ren, Bo [1 ,2 ]
Marturi, Naresh [3 ]
机构
[1] Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Joint Int Res Lab Intelligent Percept & Computat, Int Res Ctr Intelligent Percept & Computat,Minist, Xian 710071, Shaanxi, Peoples R China
[2] Xidian Univ, Sch Artificial Intelligence, Xian 710071, Shaanxi, Peoples R China
[3] Univ Birmingham, Extreme Robot Lab, Birmingham B15 2TT, W Midlands, England
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2019年 / 57卷 / 04期
基金
中国国家自然科学基金;
关键词
Polarimetric synthetic aperture radar (PolSAR); projective dictionary pair learning (DPL); semicoupled dictionary learning (SCDL); semicoupled projective DPL (SDPL); stacked auto-encoder (SAE); SPARSE REPRESENTATION; SCATTERING MODEL; SAR; COVER; DECOMPOSITION; FOREST; LIDAR;
D O I
10.1109/TGRS.2018.2873302
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Polarimetric synthetic aperture radar (PolSAR) image classification plays an important role in remote sensing image processing. In recent years, stacked auto-encoder (SAE) has obtained a series of excellent results in PolSAR image classification. The recently proposed projective dictionary pair learning (DPL) model takes both accuracy and time consumption into consideration, and another recently proposed semicoupled dictionary learning (SCDL) model gives a new way to fit different features. Based on the SAE, DPL and SCDL models, we propose a novel semicoupled projective DPL method with SAE (SAE-SDPL) for PolSAR image classification. Our method can get the classification result efficiently and correctly and meanwhile giving a new method to fit different features. In this paper, three PolSAR images are used to test the performance of SAE-SDPL. Compared with some state-of-the-art methods, our method obtains excellent results in PolSAR image classification.
引用
收藏
页码:2407 / 2418
页数:12
相关论文
共 50 条
[1]  
[Anonymous], 2010, EURASIP J ADV SIG PR, DOI DOI 10.1109/EC0C.2010.5622099
[2]  
[Anonymous], FOUND TRENDS MACH LE
[3]  
[Anonymous], 1990, RADAR POLARIMETRY GE
[4]  
CAMERON WL, 1990, RECORD OF THE IEEE 1990 INTERNATIONAL RADAR CONFERENCE, P549, DOI 10.1109/RADAR.1990.201088
[5]   The use of fully polarimetric information for the fuzzy neural classification of SAR images [J].
Chen, CT ;
Chen, KS ;
Lee, JS .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (09) :2089-2100
[6]   Classification of multifrequency polarimetric SAR imagery using a dynamic learning neural network [J].
Chen, KS ;
Huang, WP ;
Tsay, DH ;
Amar, F .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1996, 34 (03) :814-820
[7]   Deep Learning-Based Classification of Hyperspectral Data [J].
Chen, Yushi ;
Lin, Zhouhan ;
Zhao, Xing ;
Wang, Gang ;
Gu, Yanfeng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2094-2107
[8]   TARGET DECOMPOSITION-THEOREMS IN RADAR SCATTERING [J].
CLOUDE, SR .
ELECTRONICS LETTERS, 1985, 21 (01) :22-24
[9]   An entropy based classification scheme for land applications of polarimetric SAR [J].
Cloude, SR ;
Pottier, E .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1997, 35 (01) :68-78
[10]   A COEFFICIENT OF AGREEMENT FOR NOMINAL SCALES [J].
COHEN, J .
EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 1960, 20 (01) :37-46