π Berry phase and Zeeman splitting of Weyl semimetal TaP

被引:120
作者
Hu, J. [1 ]
Liu, J. Y. [1 ,2 ]
Graf, D.
Radmanesh, S. M. A. [3 ,4 ]
Adams, D. J. [3 ,4 ]
Chuang, A. [1 ]
Wang, Y. [1 ]
Chiorescu, I. [2 ,5 ]
Wei, J. [1 ]
Spinu, L. [3 ,4 ]
Mao, Z. Q. [1 ]
机构
[1] Tulane Univ, Dept Phys & Engn Phys, New Orleans, LA 70118 USA
[2] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
[3] Univ New Orleans, Adv Mat Res Inst, New Orleans, LA 70148 USA
[4] Univ New Orleans, Dept Phys, New Orleans, LA 70148 USA
[5] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
GIANT MAGNETORESISTANCE; ULTRAHIGH MOBILITY; FERMION SEMIMETAL; SURFACE;
D O I
10.1038/srep18674
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The recent breakthrough in the discovery of Weyl fermions in monopnictide semimetals provides opportunities to explore the exotic properties of relativistic fermions in condensed matter. The chiral anomaly-induced negative magnetoresistance and pi Berry phase are two fundamental transport properties associated with the topological characteristics of Weyl semimetals. Since monopnictide semimetals are multiple-band systems, resolving clear Berry phase for each Fermi pocket remains a challenge. Here we report the determination of Berry phases of multiple Fermi pockets of Weyl semimetal TaP through high field quantum transport measurements. We show our TaP single crystal has the signatures of a Weyl state, including light effective quasiparticle masses, ultrahigh carrier mobility, as well as negative longitudinal magnetoresistance. Furthermore, we have generalized the Lifshitz-Kosevich formula for multiple-band Shubnikov-de Haas (SdH) oscillations and extracted the Berry phases of pi for multiple Fermi pockets in TaP through the direct fits of the modified LK formula to the SdH oscillations. In high fields, we also probed signatures of Zeeman splitting, from which the Lande g-factor is extracted.
引用
收藏
页数:8
相关论文
共 48 条
[1]   Quantum magnetoresistance [J].
Abrikosov, AA .
PHYSICAL REVIEW B, 1998, 58 (05) :2788-2794
[2]   Large, non-saturating magnetoresistance in WTe2 [J].
Ali, Mazhar N. ;
Xiong, Jun ;
Flynn, Steven ;
Tao, Jing ;
Gibson, Quinn D. ;
Schoop, Leslie M. ;
Liang, Tian ;
Haldolaarachchige, Neel ;
Hirschberger, Max ;
Ong, N. P. ;
Cava, R. J. .
NATURE, 2014, 514 (7521) :205-+
[4]  
Borisenko S., 2015, ARXIV150704847
[5]   Prediction of a Weyl semimetal in Hg1-x-yCdxMnyTe [J].
Bulmash, Daniel ;
Liu, Chao-Xing ;
Qi, Xiao-Liang .
PHYSICAL REVIEW B, 2014, 89 (08)
[6]   Large unsaturated positive and negative magnetoresistance in Weyl semimetal TaP [J].
Du, JianHua ;
Wang, HangDong ;
Chen, Qin ;
Mao, QianHui ;
Khan, Rajwali ;
Xu, BinJie ;
Zhou, YuXing ;
Zhang, YanNan ;
Yang, JinHu ;
Chen, Bin ;
Feng, ChunMu ;
Fang, MingHu .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2016, 59 (05)
[7]   Magnetotransport of single crystalline NbAs [J].
Ghimire, N. J. ;
Luo, Yongkang ;
Neupane, M. ;
Williams, D. J. ;
Bauer, E. D. ;
Ronning, F. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (15)
[8]   Quantum Transport Evidence for the Three-Dimensional Dirac Semimetal Phase in Cd3As2 [J].
He, L. P. ;
Hong, X. C. ;
Dong, J. K. ;
Pan, J. ;
Zhang, Z. ;
Zhang, J. ;
Li, S. Y. .
PHYSICAL REVIEW LETTERS, 2014, 113 (24)
[9]   A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class [J].
Huang, Shin-Ming ;
Xu, Su-Yang ;
Belopolski, Ilya ;
Lee, Chi-Cheng ;
Chang, Guoqing ;
Wang, BaoKai ;
Alidoust, Nasser ;
Bian, Guang ;
Neupane, Madhab ;
Zhang, Chenglong ;
Jia, Shuang ;
Bansil, Arun ;
Lin, Hsin ;
Hasan, M. Zahid .
NATURE COMMUNICATIONS, 2015, 6
[10]   Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs [J].
Huang, Xiaochun ;
Zhao, Lingxiao ;
Long, Yujia ;
Wang, Peipei ;
Chen, Dong ;
Yang, Zhanhai ;
Liang, Hui ;
Xue, Mianqi ;
Weng, Hongming ;
Fang, Zhong ;
Dai, Xi ;
Chen, Genfu .
PHYSICAL REVIEW X, 2015, 5 (03)