Divisibility results on Franel numbers and related polynomials

被引:5
|
作者
Wang, Chen [1 ]
Sun, Zhi-Wei [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Franel numbers; combinatorial congruences; divisibility; integer sequences; TELESCOPING METHOD; CONGRUENCES; PROOF; SUN; CONJECTURES;
D O I
10.1142/S1793042119500222
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish some new divisibility results involving the Franel numbers f(n) = Sigma(n)(k-0) ((n)(k))(3) (n = 0, 1, 2,...) and the polynomials g(n)( x) = Sigma(n)(k-0) ((n)(k))(2) ((2k)(k))(xk) ( n = 0, 1, 2,...). For example, we show that for any positive integer n we have 9/2n(2)(n+1)(2) Sigma(n)(k=1)k(2)(3k+1)(-1)(n-k) f(k) is an element of{1, 2, 3, ...} and 2/n(n+1) Sigma(n)(k=1) k(2)(4k +3)g(k) (2) is an element of {1, 3, 5, ...}, and for any prime p > 3 we have Sigma(p-1)(k=0)k(2) (3k +1)(-1)(k) f(k) = 2/9p(2) (mod p(3)) and Sigma(p-1)(k=0) k(2) (4k +3)g(k)(2) 7/2p (mod p(2)).
引用
收藏
页码:433 / 444
页数:12
相关论文
共 50 条
  • [41] A note on the simultaneous 3-divisibility of class numbers of tuples of real quadratic fields
    Mishra, Mohit
    Saikia, Anupam
    RAMANUJAN JOURNAL, 2024, 64 (02): : 465 - 474
  • [42] New results on the divisibility of power GCD and power LCM matrices
    Zhu, Guangyan
    Li, Mao
    Xu, Xiaofan
    AIMS MATHEMATICS, 2022, 7 (10): : 18239 - 18252
  • [43] On Generating Functions for Parametrically Generalized Polynomials Involving Combinatorial, Bernoulli and Euler Polynomials and Numbers
    Bayad, Abdelmejid
    Simsek, Yilmaz
    SYMMETRY-BASEL, 2022, 14 (04):
  • [44] Poly-Bernoulli numbers and polynomials with a q parameter
    Cenkci, Mehmet
    Komatsu, Takao
    JOURNAL OF NUMBER THEORY, 2015, 152 : 38 - 54
  • [45] Some identities and congruences concerning Euler numbers and polynomials
    Maiga, Hamadoun
    JOURNAL OF NUMBER THEORY, 2010, 130 (07) : 1590 - 1601
  • [46] The Proof of a Conjecture on the Density of Sets Related to Divisibility Properties of z(n)
    Trojovska, Eva
    Kandasamy, Venkatachalam
    MATHEMATICS, 2021, 9 (22)
  • [47] Generalized harmonic numbers via poly-Bernoulli polynomials
    Kargin, Levent
    Cenkci, Mehmet
    Dil, Ayhan
    Can, Mumun
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2022, 100 (3-4): : 365 - 386
  • [48] Some congruences involving generalized Bernoulli numbers and Bernoulli polynomials
    Li, Ni
    Ma, Rong
    ACTA ARITHMETICA, 2024, 212 (01)
  • [49] Notes on the divisibility of the class numbers of imaginary quadratic fields Q(√32e-4kn)
    Ito, Akiko
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2015, 85 (01): : 1 - 21
  • [50] On some results concerning the polygonal polynomials
    Andrica, Dorin
    Bagdasar, Ovidiu
    CARPATHIAN JOURNAL OF MATHEMATICS, 2019, 35 (01) : 1 - 12