Variational principles and fixed point theorems

被引:2
作者
Pasicki, Lech [1 ]
机构
[1] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
关键词
Variational principle; Metric space; Cauchy sequence; Kuratowski lemma; Fixed point;
D O I
10.1016/j.topol.2012.07.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper concerns fundamental variational principles and the Caristi fixed point theorem. The Brezis-Browder theorem is extended and Altman's theorem is investigated. The notion of istance, an extension of omega-distance, is defined. The new concept enables us to prove some elegant and general variational principles which imply a much stronger form of the Caristi and the Takahashi fixed point theorems. Another consequence is an advanced version of the Ekeland variational principle. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:3243 / 3249
页数:7
相关论文
共 8 条
[1]  
ALTMAN M, 1981, NONLINEAR ANAL, V6, P157
[2]   GENERAL PRINCIPLE ON ORDERED SETS IN NONLINEAR FUNCTIONAL-ANALYSIS [J].
BREZIS, H ;
BROWDER, FE .
ADVANCES IN MATHEMATICS, 1976, 21 (03) :355-364
[3]   FIXED-POINT THEOREMS FOR MAPPINGS SATISFYING INWARDNESS CONDITIONS [J].
CARISTI, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 215 (JAN) :241-251
[4]   NON-CONVEX MINIMIZATION PROBLEMS [J].
EKELAND, I .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (03) :443-474
[5]   On the order-theoretic Cantor theorem [J].
Granas, A ;
Horvath, CD .
TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (02) :203-213
[6]  
Kada O., 1996, Math Japon, V44, P381
[7]  
Kelley JL., 1975, GEN TOPOLOGY
[8]   Transitivity and variational principles [J].
Pasicki, Lech .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (16) :5678-5684