Decay rates of Volterra equations on RN

被引:15
作者
Conti, Monica [1 ]
Gatti, Stefania [2 ]
Pata, Vittorino [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
[2] Univ Modena & Reggio Emilia, Dipartimento Matemat, I-41100 Modena, Italy
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2007年 / 5卷 / 04期
关键词
integro-differential equations; memory kernel; polynomial decay;
D O I
10.2478/s11533-007-0024-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This note is concerned with the linear Volterra equation of hyperbolic type partial derivative(tt)u(t)-alpha Delta u(t)+integral(t)(0)mu(s)Delta u(t-s)ds=0 on the whole space R(N). New results concerning the decay of the associated energy as time goes to infinity were established. (C) Versita Warsaw and Springer-Verlag Berlin Heidelberg. All rights reserved.
引用
收藏
页码:720 / 732
页数:13
相关论文
共 15 条
[1]  
[Anonymous], 1992, SIAM STUD APPL MATH
[2]  
CONTI M, MATH MODELS IN PRESS
[3]  
DAFERMOS CM, 1970, ARCH RATION MECH AN, V37, P297
[4]   AN ABSTRACT VOLTERRA EQUATION WITH APPLICATIONS TO LINEAR VISCOELASTICITY [J].
DAFERMOS, CM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1970, 7 (03) :554-&
[5]  
DAFERMOS CM, 1976, LECT NOTES MATH, V503, P295
[6]   EQUIPARTITION OF ENERGY IN LINEARIZED 3-D VISCOELASTICITY [J].
DASSIOS, G ;
ZAFIROPOULOS, F .
QUARTERLY OF APPLIED MATHEMATICS, 1990, 48 (04) :715-730
[7]   ON THE EXISTENCE AND THE ASYMPTOTIC STABILITY OF SOLUTIONS FOR LINEARLY VISCOELASTIC SOLIDS [J].
FABRIZIO, M ;
LAZZARI, B .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 116 (02) :139-152
[8]  
Grasselli M, 2002, PROG NONLIN, V50, P155
[9]   On the exponential stability of linear viscoelasticity and thermoviscoelasticity [J].
Liu, ZY ;
Zheng, SM .
QUARTERLY OF APPLIED MATHEMATICS, 1996, 54 (01) :21-31
[10]  
Pata V., 2001, ADV MATH SCI APPL, V11, P505