Kolmogorov-Sinaj entropy on MV-algebras

被引:19
作者
Riecan, B [1 ]
机构
[1] M Bel Univ, Bratislava 81473, Slovakia
关键词
dynamical systems;
D O I
10.1007/s10773-005-7080-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
There is given a construction of the entropy of a dynamical system on arbitrary MV-algebra M. If M is the MV-algebra of characteristic functions of a sigma-algebra (isomorphic to the sigma-algebra), then the construction leads to the Kolmogorov-Sinaj entropy. If M is the MV-algebra (tribe) of fuzzy sets, then the construction coincides with the Malicky modification of the Kolmogorov-Sinaj entropy for fuzzy sets (Malicky and Riecan, 1986; Riecan and Mundici, 2002; Riecan and Neubrunn, 1997).
引用
收藏
页码:1041 / 1052
页数:12
相关论文
共 15 条
[1]  
[Anonymous], 1986, MATH SURVEYS MONOGR
[2]  
Butnariu D., 1993, Triangular Norm-Based Measures and Games with Fuzzy Coalitions
[3]   Loomis-Sikorski theorem for σ-complete MV-algebras and l-groups [J].
Dvurecenskij, A .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 2000, 68 :261-277
[4]   Weakly divisible MV-algebras and product [J].
Dvurecenskij, A ;
Riecan, B .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 234 (01) :208-222
[5]  
Dvurecenskij A., 2000, MATH ITS APPL, V516
[6]  
MALICKY P, 1986, P C ERG THEOR REL TO, V2, P135
[7]   Every Abelian l-group is ultrasimplicial [J].
Marra, V .
JOURNAL OF ALGEBRA, 2000, 225 (02) :872-884
[8]   An algebraic approach to propositional fuzzy logic [J].
Montagna F. .
Journal of Logic, Language and Information, 2000, 9 (1) :91-124
[9]   INTERPRETATION OF AF CSTAR-ALGEBRAS IN LUKASIEWICZ SENTENTIAL CALCULUS [J].
MUNDICI, D .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 65 (01) :15-63
[10]   Tensor products and the Loomis-Sikorski theorem for MV-algebras [J].
Mundici, D .
ADVANCES IN APPLIED MATHEMATICS, 1999, 22 (02) :227-248