Preference bi-objective evolutionary algorithm for constrained optimization

被引:0
|
作者
Wang, YP
Liu, DL
Cheung, YM
机构
[1] Xidian Univ, Fac Comp Sci & Technol, Xian 710071, Peoples R China
[2] Beijing Union Univ, Dept Basic Course Teaching, Beijing, Peoples R China
[3] Hong Kong Baptist Univ, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a new constraint handling approach that transforms constrained optimization problem of any number of constraints into a two objective preference optimization problem. We design a new crossover operator based on uniform design methods ([8]), a new mutation operator using local search and preference, and a new selection operator based on the preference of the two objectives. The simulation results indicate the proposed algorithm is effective.
引用
收藏
页码:184 / 191
页数:8
相关论文
共 50 条
  • [21] Constrained Engineering Design Optimization Using a Hybrid Bi-objective Evolutionary-Classical Methodology
    Datta, Rituparna
    SIMULATED EVOLUTION AND LEARNING, 2010, 6457 : 633 - 637
  • [22] Theoretical Analysis and Empirical Validation of the Conical Area Evolutionary Algorithm for Bi-Objective Optimization
    Jalil, Hassan
    Li, Kangshun
    Ying, Weiqin
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2022, 26 (05) : 1058 - 1071
  • [23] Feedback neural network for constrained bi-objective convex optimization
    Liu, Na
    Su, Zhiyuan
    Chai, Yueting
    Qin, Sitian
    NEUROCOMPUTING, 2022, 514 : 127 - 136
  • [24] Constrained particle swarm optimization using a bi-objective formulation
    Venter, G.
    Haftka, R. T.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2010, 40 (1-6) : 65 - 76
  • [25] Equispaced Pareto front construction for constrained bi-objective optimization
    Pereyra, Victor
    Saunders, Michael
    Castillo, Jose
    MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (9-10) : 2122 - 2131
  • [26] Constrained particle swarm optimization using a bi-objective formulation
    G. Venter
    R. T. Haftka
    Structural and Multidisciplinary Optimization, 2010, 40 : 65 - 76
  • [27] A new evolutionary algorithm for the bi-objective minimum spanning tree
    Rocha, Daniel A. M.
    Goldbarg, Elizabeth F. G.
    Goldbarg, Marco C.
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, 2007, : 735 - 740
  • [28] An Evolutionary Algorithm Applied to the Bi-Objective Travelling Salesman Problem
    Pauleti Mendes, Luis Henrique
    Usberti, Fabio Luiz
    San Felice, Mario Cesar
    METAHEURISTICS, MIC 2022, 2023, 13838 : 519 - 524
  • [29] On efficiency of a single variable bi-objective optimization algorithm
    James M. Calvin
    Antanas Žilinskas
    Optimization Letters, 2020, 14 : 259 - 267
  • [30] On efficiency of a single variable bi-objective optimization algorithm
    Calvin, James M.
    Zilinskas, Antanas
    OPTIMIZATION LETTERS, 2020, 14 (01) : 259 - 267