Incorporation of tissue-specific molecules alters chondrocyte metabolism and gene expression in photocrosslinked hydrogels

被引:92
作者
Bryant, SJ
Arthur, JA
Anseth, KS [1 ]
机构
[1] Univ Colorado, Dept Biol & Chem Engn, ECCH Boulder, Boulder, CO 80309 USA
[2] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA
关键词
cartilage tissue engineering; chondrocyte; chondroitin sulfate; gene expression; poly(ethylene glycol);
D O I
10.1016/j.actbio.2004.11.003
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Hydrogels are highly swollen, insoluble networks which can entrap chondrocytes and provide a 3D environment necessary for the re-growth of cartilaginous tissue. In this study, hydrogels were formulated with a synthetic poly(ethylene glycol) (PEG) component to provide control over the macroscopic gel properties and from a cartilage specific compound, chondroitin sulfate (ChSA), to capture features of the chondrocytes' native environment. PEG was chosen as the base hydrogel chemistry, because it forms a 3-D environment that maintains chondrocyte function. ChSA, a highly negatively charged main component of proteoglycans, was then selectively incorporated into the PEG gel. Macroscopic gel properties were manipulated to obtain high compressive moduli coupled with a high degree of swelling by formulating copolymer gels with these chemistries. The gel compressive modulus of cell-free PEG gels increased from 34 to 140 kPa with the incorporation of ChSA for similar degrees of swelling. When chondrocytes were encapsulated in pure ChSA gels, synthesis of collagen and glycosaminoglycans was inhibited. However, when PEG was introduced into the copolymer gels, both extracellular matrix components were stimulated. Total collagen content increased from non-detectable in the pure ChSA gels to 0.48 +/- 0.05 mg/g wet weight in the copolymer gels (40/60 ChSA/PEG). Gene expression for collagen type 11 was also enhanced by the incorporation of PEG into the gel, illustrating an important influence of gel chemistry on chondrocyte function; however, aggrecan gene expression was unaffected. This study demonstrates that the macroscopic properties of chondrocyte gel carriers can be controlled through the incorporation of charge into networks by ChSA, but the neutral, non-interactive base PEG chemistry facilitates extracellular matrix deposition. (c) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 56 条
[1]  
Aigner J, 1998, J BIOMED MATER RES, V42, P172, DOI 10.1002/(SICI)1097-4636(199811)42:2<172::AID-JBM2>3.0.CO
[2]  
2-M
[3]  
Allemann M, 2001, J BIOMED MATER RES, V55, P13
[4]   VARIATIONS IN THE INTRINSIC MECHANICAL PROTERTIES OF HUMAN ARTICULAR-CARTILAGE WITH AGE, DEGENERATION, AND WATER-CONTENT [J].
ARMSTRONG, CG ;
MOW, VC .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1982, 64 (01) :88-94
[5]  
Brun P, 1999, J BIOMED MATER RES, V46, P337, DOI 10.1002/(SICI)1097-4636(19990905)46:3<337::AID-JBM5>3.0.CO
[6]  
2-Q
[7]  
Bryant S J, 1999, Biomed Sci Instrum, V35, P309
[8]   Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro [J].
Bryant, SJ ;
Nuttelman, CR ;
Anseth, KS .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2000, 11 (05) :439-457
[9]   Synthesis and characterization of photopolymerized multifunctional hydrogels: Water-soluble poly(vinyl alcohol) and chondroitin sulfate macromers for chondrocyte encapsulation [J].
Bryant, SJ ;
Davis-Arehart, KA ;
Luo, N ;
Shoemaker, RK ;
Arthur, JA ;
Anseth, KS .
MACROMOLECULES, 2004, 37 (18) :6726-6733
[10]   Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels [J].
Bryant, SJ ;
Anseth, KS .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2002, 59 (01) :63-72