The Farrell-Hsiang method revisited

被引:10
作者
Bartels, A. [1 ]
Lueck, W. [2 ]
机构
[1] Univ Munster, Math Inst, D-48149 Munster, Germany
[2] Univ Bonn, Math Inst, D-53115 Bonn, Germany
关键词
JONES CONJECTURE; CYCLIC) GROUPS; REPRESENTATIONS; POLY-(FINITE;
D O I
10.1007/s00208-011-0727-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a sufficient condition for groups to satisfy the Farrell-Jones Conjecture in algebraic K-theory and L-theory. The condition is formulated in terms of finite quotients of the group in question and is motivated by work of Farrell-Hsiang.
引用
收藏
页码:209 / 226
页数:18
相关论文
共 18 条
[1]  
Bartels A., 2009, 478 SFB
[2]  
Bartels A., 2011, ARXIV11010469MATHGT
[3]  
Bartels A., 2009, ADV LECT MATH, V12, P1
[4]   The K-theoretic Farrell-Jones conjecture for hyperbolic groups [J].
Bartels, Arthur ;
Lueck, Wolfgang ;
Reich, Holger .
INVENTIONES MATHEMATICAE, 2008, 172 (01) :29-70
[5]   On the Farrell-Jones Conjecture and its applications [J].
Bartels, Arthur ;
Lueck, Wolfgang ;
Reich, Holger .
JOURNAL OF TOPOLOGY, 2008, 1 (01) :57-86
[6]   INDUCTION AND STRUCTURE THEOREMS FOR ORTHOGONAL REPRESENTATIONS OF FINITE-GROUPS [J].
DRESS, AWM .
ANNALS OF MATHEMATICS, 1975, 102 (02) :291-325
[7]  
Farrell F. T., 1993, J AM MATH SOC, V6, P249, DOI [10.2307/2152801, DOI 10.2307/2152801]
[8]  
Farrell F. T., 1993, DIFFERENTIAL GEOMETR, P229
[9]   TOPOLOGICAL-EUCLIDEAN SPACE FORM PROBLEM [J].
FARRELL, FT ;
HSIANG, WC .
INVENTIONES MATHEMATICAE, 1978, 45 (02) :181-192
[10]  
FARRELL FT, 1983, AM J MATH, V105, P641, DOI 10.2307/2374318