Zero forcing sets and bipartite circulants

被引:15
作者
Meyer, Seth A. [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
Zero forcing number; Maximum nullity; Minimum rank; Circulant matrix; MINIMUM RANK; GRAPH;
D O I
10.1016/j.laa.2011.09.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a class of regular bipartite graphs whose biadjacency matrices are circulant matrices - a generalization of circulant graphs which happen to be bipartite - and we describe some of their properties. Notably, we compute upper and lower bounds for the zero forcing number for such a graph based only on the parameters that describe its biadjacency matrix. The main results of the paper characterize the bipartite circulant graphs that achieve equality in the lower bound and compute their minimum ranks. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:888 / 900
页数:13
相关论文
共 8 条
[1]   Zero forcing sets and the minimum rank of graphs [J].
Barioli, Francesco ;
Barrett, Wayne ;
Butler, Steve ;
Cioaba, Sebastian M. ;
Cvetkovic, Dragos ;
Fallat, Shaun M. ;
Godsil, Chris ;
Haemers, Willem ;
Hogben, Leslie ;
Mikkelson, Rana ;
Narayan, Sivaram ;
Pryporova, Olga ;
Sciriha, Irene ;
So, Wasin ;
Stevanovic, Dragan ;
van der Holst, Hein ;
Vander Meulen, Kevin N. ;
Wehe, Amy Wangsness .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) :1628-1648
[2]   Zero forcing parameters and minimum rank problems [J].
Barioli, Francesco ;
Barrett, Wayne ;
Fallat, Shaun M. ;
Hall, H. Tracy ;
Hogben, Leslie ;
Shader, Bryan ;
van den Driessche, P. ;
van der Holst, Hein .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (02) :401-411
[3]   An upper bound for the minimum rank of a graph [J].
Berman, Avi ;
Friedland, Shmuel ;
Hogben, Leslie ;
Rothblum, Uriel G. ;
Shader, Bryan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (07) :1629-1638
[4]  
Burgarth D., 2009, NEW J PHYS, V11
[5]  
Davis PJ., 1979, Circulant Matrices
[6]   Techniques for determining the minimum rank of a small graph [J].
DeLoss, Laura ;
Grout, Jason ;
Hogben, Leslie ;
McKay, Tracy ;
Smith, Jason ;
Tims, Geoff .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) :2995-3001
[7]   The minimum rank of symmetric matrices described by a graph: A survey [J].
Fallat, Shaun M. ;
Hogben, Leslie .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) :558-582
[8]   On planarity and colorability of circulant graphs [J].
Heuberger, C .
DISCRETE MATHEMATICS, 2003, 268 (1-3) :153-169