Optimal investment for insurer with jump-diffusion risk process

被引:357
作者
Yang, HL
Zhang, LH
机构
[1] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
[2] Tsinghua Univ, Sch Econ & Management, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamilton-Jacobi-Bellman equations; martingale; utility; jump-diffusion; Ito's formula; Stochastic control;
D O I
10.1016/j.insmatheco.2005.06.009
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we study optimal investment policies of an insurer with jump-diffusion risk process. Under the assumptions that the risk process is compound Poisson process perturbed by a standard Brownian motion and the insurer can invest in the money market and in a risky asset, we obtain the close form expression of the optimal policy when the utility function is exponential. We also study the insurer's optimal policy for general objective function, a verification theorem is proved by using martingale optimality principle and Ito's formula for jump-diffusion process. In the case of minimizing ruin probability, numerical methods and numerical results are presented for various claim-size distributions. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:615 / 634
页数:20
相关论文
共 50 条
[41]   ON THE DISCOUNTED PENALTY AT RUIN IN A JUMP-DIFFUSION MODEL [J].
Chen, Yu-Ting ;
Sheu, Yuan-Chung .
TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (04) :1337-1350
[42]   Online drift estimation for jump-diffusion processes [J].
Bhudisaksang, Theerawat ;
Cartea, Alvaro .
BERNOULLI, 2021, 27 (04) :2494-2518
[43]   Robustness of Delta Hedging in a Jump-Diffusion Model [J].
Bosserhoff, Frank ;
Stadje, Mitja .
SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2023, 14 (02) :663-703
[44]   Optimal investment for an insurer with exponential utility preference [J].
Wang, Nan .
INSURANCE MATHEMATICS & ECONOMICS, 2007, 40 (01) :77-84
[45]   Jump locations of jump-diffusion processes with state-dependent rates [J].
Miles, Christopher E. ;
Keener, James P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (42)
[46]   Time-consistent mean-variance reinsurance-investment in a jump-diffusion financial market [J].
Yang, Peng .
OPTIMIZATION, 2017, 66 (05) :737-758
[47]   Modeling epistemic subsurface reservoir uncertainty using a reverse Wiener jump-diffusion process [J].
Lin, Jijun ;
de Weck, Olivier ;
MacGowan, David .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2012, 84-85 :8-19
[48]   ROBUST OPTIMAL PROPORTIONAL REINSURANCE AND INVESTMENT STRATEGY FOR AN INSURER WITH ORNSTEIN-UHLENBECK PROCESS [J].
Ma, Jianjing ;
Wang, Guojing ;
Xing, Yongsheng .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (06) :1467-1483
[49]   A simple numerical solution for an optimal investment strategy for a DC pension plan in a jump diffusion model [J].
Mudzimbabwe, Walter .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 360 :55-61
[50]   Risk-neutral and actual default probabilities with an endogenous bankruptcy jump-diffusion model [J].
Le Courtois O. ;
Quittard-Pinon F. .
Asia-Pacific Financial Markets, 2006, 13 (1) :11-39