Optimal investment for insurer with jump-diffusion risk process

被引:356
作者
Yang, HL
Zhang, LH
机构
[1] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
[2] Tsinghua Univ, Sch Econ & Management, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamilton-Jacobi-Bellman equations; martingale; utility; jump-diffusion; Ito's formula; Stochastic control;
D O I
10.1016/j.insmatheco.2005.06.009
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we study optimal investment policies of an insurer with jump-diffusion risk process. Under the assumptions that the risk process is compound Poisson process perturbed by a standard Brownian motion and the insurer can invest in the money market and in a risky asset, we obtain the close form expression of the optimal policy when the utility function is exponential. We also study the insurer's optimal policy for general objective function, a verification theorem is proved by using martingale optimality principle and Ito's formula for jump-diffusion process. In the case of minimizing ruin probability, numerical methods and numerical results are presented for various claim-size distributions. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:615 / 634
页数:20
相关论文
共 50 条
[31]   Stochastic Storage Model with Jump-Diffusion [J].
Vittal P.R. ;
Venkateswaran M. ;
Reddy P.R.S. .
Journal of the Indian Society for Probability and Statistics, 2017, 18 (1) :53-76
[32]   Jump-Diffusion Risk-Sensitive Asset Management I: Diffusion Factor Model [J].
Davis, Mark ;
Lleo, Sebastien .
SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2011, 2 (01) :22-54
[33]   Optimal control of mean-field jump-diffusion systems with noisy memory [J].
Ma, Heping ;
Liu, Bin .
INTERNATIONAL JOURNAL OF CONTROL, 2019, 92 (04) :816-827
[34]   Stability for multidimensional jump-diffusion processes [J].
Zhang, QM ;
Li, XN .
PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, :753-756
[35]   An HMM approach for optimal investment of an insurer [J].
Elliott, Robert J. ;
Siu, Tak Kuen .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2012, 22 (07) :778-807
[36]   OPTIMAL INVESTMENT AND RISK CONTROL PROBLEMS WITH DELAY FOR AN INSURER IN DEFAULTABLE MARKET [J].
Deng, Chao ;
Yao, Haixiang ;
Chen, Yan .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2020, 16 (05) :2563-2579
[37]   Optimal dividend payment strategies with debt constraint in a hybrid regime-switching jump-diffusion model [J].
Tan, Senren ;
Jin, Zhuo ;
Yin, G. .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2018, 27 :141-156
[38]   OPTIMAL DIVIDEND POLICY WHEN CASH RESERVES FOLLOW A JUMP-DIFFUSION PROCESS UNDER MARKOV-REGIME SWITCHING [J].
Jiang, Zhengjun .
JOURNAL OF APPLIED PROBABILITY, 2015, 52 (01) :209-223
[39]   Time-consistent investment-proportional reinsurance strategy under a jump-diffusion model [J].
Guambe, Calisto .
MATHEMATICAL COMMUNICATIONS, 2023, 28 (02) :235-255
[40]   On the optimal design of a new class of proportional portfolio insurance strategies in a jump-diffusion framework [J].
Colaneri, Katia ;
Mancinelli, Daniele ;
Oliva, Immacolata .
SCANDINAVIAN ACTUARIAL JOURNAL, 2025,