ANALYTICAL PARAMETERIZATION OF ROTORS AND PROOF OF A GOLDBERG CONJECTURE BY OPTIMAL CONTROL THEORY

被引:7
作者
Bayen, Terence [1 ]
机构
[1] Ecole Super Elect, Signaux & Syst Lab, F-91192 Gif Sur Yvette, France
关键词
shape optimization; convexity; constant width bodies; rotors; support function; optimal control; Pontryagin maximum principle; switching point; bang control; Noether theorem;
D O I
10.1137/070705325
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Curves which can be rotated freely in an n-gon (that is, a regular polygon with n sides) so that they always remain in contact with every side of the n-gon are called rotors. Using optimal control theory, we prove that the rotor with minimal area consists of a finite union of arcs of circles. Moreover, the radii of these arcs are exactly the distances of the diagonals of the n-gon from the parallel sides. Finally, using the extension of Noether's theorem to optimal control (as performed in [D. F. M. Torres, WSEAS Trans. Math., 3 (2004), pp. 620-624]), we show that a minimizer is necessarily a regular rotor, which proves a conjecture formulated in 1957 by Goldberg (see [M. Goldberg, Amer. Math. Monthly, 64 (1957), pp. 71-78]).
引用
收藏
页码:3007 / 3036
页数:30
相关论文
共 35 条
[1]  
Agrachev A., 2004, Control Theory From the Geometric Viewpoint
[2]   THE ANALYTICAL SOLUTION OF GEOMETRIC OPTIMIZATION PROBLEMS USING DUALITY IN OPTIMAL-CONTROL [J].
ANDREJEWA, JA ;
KLOTZLER, R .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1984, 64 (03) :147-153
[3]   ON THE ANALYTICAL SOLUTION OF GEOMETRIC OPTIMIZATION TASKS WITH THE AID OF THE DUALITY OF OPTIMAL-CONTROL PROBLEMS .1. [J].
ANDREJEWA, JA ;
KLOTZLER, R .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1984, 64 (01) :35-44
[4]  
[Anonymous], 1911, Vierteljahrsschr. Nat.forsch. Ges. Zur.
[5]  
[Anonymous], 1993, Handbook of convex geometry
[6]   Analytic parametrization of three-dimensional bodies of constant width [J].
Bayen, T. ;
Lachand-Robert, T. ;
Oudet, E. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 186 (02) :225-249
[7]   Convex fields of constant data in small amounts [J].
Blaschke, W .
MATHEMATISCHE ANNALEN, 1915, 76 :504-513
[8]  
Boltyanskiy VG, 1962, Mathematical theory of optimal processes, P9
[9]  
Bonnesen T., 1987, Theory of convex bodies
[10]  
Dacorogna B., 2015, INTRO CALCULUS VARIA