Heuristic Application System on Pose Detection of Elderly Activity Using Machine Learning in Real-Time

被引:0
|
作者
Ariyani, Sofia [1 ]
Yuniarno, Eko Mulyanto [2 ]
Purnomo, Mauridhi Hery [3 ,4 ]
机构
[1] Univ Muhammadiyah Jember, Dept Elect Engn, Jember, Indonesia
[2] Dept Comp Engn, Surabaya, Indonesia
[3] Inst Teknologi Sepuluh Nopember, Dept Elect Engn, Dept Comp Engn, Surabaya, Indonesia
[4] Univ Ctr Excellence Artificial Intelligence Healt, Surabaya, Indonesia
关键词
Segmentation classification; pose estimation; behavioral activity recognition; Elderly movement tracking; machine learning; motion capture;
D O I
10.1109/CIVEMSA53371.2022.9853649
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many developed countries have a population of elderly people that is greater than the population of young workers. So. To meet the demand for labor there is a decline because many are retiring. To meet the future demand that many elderly people need a quality care service so that the elderly who experience physical and cognitive decline can be well protected.Great potential study and evaluation of elderly movement activity for healthcare. The algorithm of pose estimation takes advantage of recording video have tracked elderly movement automatically using camera devices and computer vision. Monitoring and measuring elderly movement activity in real-time more easily accessible with this view of technology offers a clear and exciting potential as motor assessment by the doctor at the patient at home. The perpetrator can send video recording directly in the field by combining expertise and perspective as from physical therapy insight into the application of pose estimation in human health, especially the elderly. This is focusing in a safe and comfortable way. These models use CNN and LSTM for classified labeling landmark point detection results with high performance 97,3 accuracy average and in real-time have range 30 FPS. So the heuristic application system can be recommended for monitoring the use of the camera with all its limitations
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Machine Learning Based Real-Time Activity Detection System Design
    Eren, Kazim Kivanc
    Kucuk, Kerem
    2017 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2017, : 462 - 467
  • [2] Real-Time Network Anomaly Detection System Using Machine Learning
    Zhao, Shuai
    Chandrashekar, Mayanka
    Lee, Yugyung
    Medhi, Deep
    2015 11TH INTERNATIONAL CONFERENCE ON THE DESIGN OF RELIABLE COMMUNICATION NETWORKS (DRCN), 2015, : 267 - 270
  • [3] Real-Time Detection System of Driver Distraction Using Machine Learning
    Tango, Fabio
    Botta, Marco
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2013, 14 (02) : 894 - 905
  • [4] Real-Time Drowsiness Detection System for Student Tracking using Machine Learning
    Borikar, Dilipkumar A.
    Dighorikar, Himani
    Ashtikar, Shridhar
    Bajaj, Ishika
    Gupta, Shivam
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2023, 14 (01): : 246 - 254
  • [5] Real-Time Hybrid Intrusion Detection System Using Machine Learning Techniques
    Dutt, Inadyuti
    Borah, Samarjeet
    Maitra, Indra Kanta
    Bhowmik, Kuharan
    Maity, Ayindrilla
    Das, Suvosmita
    ADVANCES IN COMMUNICATION, DEVICES AND NETWORKING, 2018, 462 : 885 - 894
  • [6] Real-Time Slip Detection and Control Using Machine Learning
    Pereira Tavares, Alexandre Henrique
    Oliveira, S. R. J.
    XXVII BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2020, 2022, : 1363 - 1369
  • [7] Machine Learning Application for Real-Time Simulator
    Hadadi, Azadeh
    Chardonnet, Jean-Remy
    Guillet, Christophe
    Ovtcharova, Jivka
    PROCEEDINGS OF THE 2024 9TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING TECHNOLOGIES, ICMLT 2024, 2024, : 1 - 5
  • [8] Machine learning for real-time remote detection
    Labbe, Benjamin
    Fournier, Jerome
    Henaff, Gilles
    Bascle, Benedicte
    Canu, Stephane
    OPTICS AND PHOTONICS FOR COUNTERTERRORISM AND CRIME FIGHTING VI AND OPTICAL MATERIALS IN DEFENCE SYSTEMS TECHNOLOGY VII, 2010, 7838
  • [9] Application of Machine Learning Techniques for Real-Time Sign Language Detection using Wearable Sensors
    Saquib, Nazmus
    Rahman, Ashikur
    MMSYS'20: PROCEEDINGS OF THE 2020 MULTIMEDIA SYSTEMS CONFERENCE, 2020, : 178 - 189
  • [10] A REAL-TIME SHEEP COUNTING DETECTION SYSTEM BASED ON MACHINE LEARNING
    Deng, Xuefeng
    Zhang, Song
    Shao, Yi
    Yan, Xiaoli
    INMATEH-AGRICULTURAL ENGINEERING, 2022, 67 (02): : 85 - 94